
A Verifiable SSA Program Representation for Aggressive
Compiler Optimization

Vijay S. Menon1 Neal Glew1 Brian R. Murphy2 Andrew McCreight3 ∗ Tatiana Shpeisman1

Ali-Reza Adl-Tabatabai1 Leaf Petersen1

1Intel Labs 2Intel China Research Center 3Dept. of Computer Science, Yale University
Santa Clara, CA 95054 Beijing, China New Haven, CT 06520

{vijay.s.menon, brian.r.murphy, tatiana.shpeisman, ali-reza.adl-tabatabai, leaf.petersen}@intel.com aglew@acm.org
andrew.mccreight@yale.edu

Abstract
We present a verifiable low-level program representation to em-
bed, propagate, and preserve safety information in high perfor-
mance compilers for safe languages such as Java and C#. Our rep-
resentation precisely encodes safety information via static single-
assignment (SSA) [11, 3] proof variables that are first-class con-
structs in the program.

We argue that our representation allows a compiler to both (1)
express aggressively optimized machine-independent code and
(2) leverage existing compiler infrastructure to preserve safety
information during optimization. We demonstrate that this ap-
proach supports standard compiler optimizations, requires minimal
changes to the implementation of those optimizations, and does not
artificially impede those optimizations to preserve safety.

We also describe a simple type system that formalizes type
safety in an SSA-style control-flow graph program representation.
Through the types of proof variables, our system enables composi-
tional verification of memory safety in optimized code.

Finally, we discuss experiences integrating this representation
into the machine-independent global optimizer of STARJIT, a
high-performance just-in-time compiler that performs aggressive
control-flow, data-flow, and algebraic optimizations and is compet-
itive with top production systems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.4 [Programming
Languages]: Compilers; D.3.4 [Programming Languages]: Opti-
mization; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Performance, Design, Languages, Reliability,
Theory, Verification

Keywords Typed Intermediate Languages, Proof Variables, Safety
Dependences, Check Elimination, SSA Formalization, Type Sys-
tems, Typeability Preservation, Intermediate Representations

∗ Supported in part by NSF grants CCR-0208618 and CCR-0524545.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

1. Introduction
In the past decade, safe languages have become prevalent in the
general software community and have gained wide acceptance
among software developers. Safe languages such as Java and C# are
particularly prominent. These languages provide a C++-like syn-
tax and feature set in conjunction with verifiable safety properties.
Foremost among these properties is memory safety, the guarantee
that a program will only read or write valid memory locations.
Memory safety is crucial to both robustness and security. It pre-
vents common programmer memory errors and security exploits
such as buffer overruns through a combination of compile-time
and run-time checks.

Both Java and C# were designed to allow programs to be com-
piled and distributed via bytecode formats. These formats retain the
crucial safety properties of the source language and are themselves
statically verifiable. Managed runtime environments (MRTEs),
such as the Java Virtual Machine (JVM) or the Common Lan-
guage Infrastructure (CLI), use static verification to ensure that no
memory errors have been introduced inadvertently or maliciously
before executing bytecode programs.

Bytecodes, however, are still rather high-level compared to na-
tive machine code. Runtime checks (e.g., array bounds checks)
are built into otherwise potentially unsafe operations (e.g., mem-
ory loads) to ease the verification process. To obtain acceptable
performance, MRTEs compile programs using a just-in-time (JIT)
compiler. A JIT compiler performs several control- and data-flow
compiler transformations and produces optimized native machine
code. In the process, runtime checks are often eliminated or sepa-
rated from the potentially unsafe operations that they protect. As far
as we are aware, all production Java and CLI JIT compilers remove
safety information during the optimization process: optimized low
level code or generated machine code is not easily verifiable. From
a security perspective, this precludes the use of optimized low level
code as a persistent and distributable format. Moreover, from a reli-
ability perspective it requires that the user trust that complex com-
piler transformations do not introduce memory errors.

In recent years, researchers have developed proof languages
(e.g., PCC [20] and TAL [19]) that allow a compiler to embed
safety proofs into low-level code, along with verification tech-
niques to validate those proofs. They have demonstrated certifying
compilers that can compile Java and safe C-like languages [21, 8,
18, 13] while both performing optimizations and generating safety
proofs. Nevertheless, although the proof language and verification
process is well-developed, implementing or modifying existing op-
timizations to correctly generate and/or preserve safety information
is still an arduous and poorly understood process.

In this paper, we introduce a new program representation frame-
work for safe, imperative, object-oriented languages to aid in the
generation, propagation, and verification of safety information
through aggressive compiler optimization. In this representation
we encode safety dependences, the dependences between poten-
tially unsafe operations and the control points that guarantee their
safety, as abstract proof variables. These proof variables are purely
static: they have no runtime semantics. Nevertheless, they are first
class constructs produced by control points and consumed by po-
tentially unsafe instructions. From the perspective of most compiler
transformations, they are the same as any other variable.

We argue that this representation is particularly well-suited to
use as an intermediate representation for an aggressively optimiz-
ing compiler. We demonstrate that it supports common advanced
compiler optimizations without artificially constraining or exten-
sively modifying them. In particular, we demonstrate that by carry-
ing proof values in normal variables a compiler can leverage exist-
ing transformations such as SSA construction, copy propagation,
and dead code elimination to place, update and eliminate proof
variables.

We illustrate our ideas in the context of the machine-independent
global optimizer of STARJIT [1], a dynamic optimizing compiler
for Java and C#. STARJIT was designed as a high-performance op-
timizing compiler and is competitive in performance with the best
production MRTE systems. We describe a prototype integration of
our ideas into STARJIT’s internal representation, and we discuss
how it is able to preserve safety information through a varied set
of aggressive optimizations. The original motivation for the safety
dependence representation described in this paper was for opti-
mization rather than safety. However, a prototype implementation
of a verifier has also been developed, and this paper is intended
to provide both a description of the safety dependence mechanism
and a theoretical development of a type system based upon it.

In particular, our paper makes the following contributions:

1. We introduce a safe low-level imperative program representa-
tion that combines static single-assignment (SSA) form with
explicit safety dependences, and we illustrate how it can be used
to represent highly optimized code.

2. We present a simple type system to verify memory safety of
programs in this representation. To the best of our knowledge,
this type system is the first to formalize type checking in an
SSA representation. While SSA is in some sense equivalent to
CPS, the details are sufficiently different that our type system is
quite unlike the usual lambda-calculus style type systems and
required new proof techniques.

3. We demonstrate the utility of this program representation in a
high-performance compiler, and we describe how a compiler
can leverage its existing framework to preserve safety informa-
tion. In particular, we demonstrate that only optimizations that
directly affect memory safety, such as bounds check elimination
and strength reduction of address calculations, require signifi-
cant modification.

The remainder of the paper is organized as follows. In Section 2,
we motivate the explicit representation of safety dependence in an
optimizing compiler and describe how to do this via proof variables
in a low-level imperative program representation. In Section 3, we
describe a formal core language specifically dealing with array-
bounds checks and present a type system with which we can verify
programs in SSA form. In Section 4, we demonstrate how a com-
piler would lower a Java program to the core language and illustrate
how aggressive compiler optimizations produce efficient and veri-
fiable code. In Section 5, we informally describe extensions to our
core language to capture complete Java functionality. In Section 6,

if (a!=null)
while (!done) {

b = (B)a;
· · · = · · · b.x · · ·
· · ·

}

Figure 1. Field load in loop

we discuss the status of our current implementation, and, finally, in
Sections 7 and 8 we discuss related work and conclude.

2. Motivation
We define a potentially unsafe instruction as any instruction that,
taken out of context, might fault or otherwise cause an illegal
memory access at runtime. Some instructions, taken independently,
are inherently unsafe. A load instruction may immediately fault if
it accesses protected memory or may trigger an eventual crash by
reading an incorrectly typed value. A store may corrupt memory
with an illegal value (e.g., if an arbitrary integer replaces an object’s
virtual table).

Consider, for example, the field access in Figure 1. Assuming
C++-like semantics, the operation b.x dereferences memory with
no guarantee of safety. In general, C++ does not guarantee that b
refers to a real object of type B: b may hold an an integer that
faults when used as a pointer.

Assuming Java semantics, however, the field access itself
checks at runtime that b does not point to a null location. If the
check succeeds, the field access executes the load; otherwise, it
throws an exception, bypassing the load. By itself, this built-in
check does not ensure safety: the load also depends on the preced-
ing cast, which dynamically checks that the runtime type of b is
in fact compatible with the type B. If the check succeeds, the cast
executes the load; otherwise, it throws an exception, bypassing the
load.

Typically, the safety of a potentially unsafe instruction depends
on a set of control flow points. We refer to this form of dependence
as safety dependence. In this example, the safety of the load de-
pends on the cast that establishes its type. We call an instruction
contextually safe when its corresponding safety dependences guar-
antee its safety. To verify the output of a compiler optimization, we
must prove that each instruction is contextually safe.

2.1 Safety In Java
In Java and the verifiable subset of CLI, a combination of static ver-
ification and runtime checks guarantee the contextual safety of indi-
vidual bytecode instructions. Static type checking establishes that
variables have the appropriate primitive or object type. Runtime
checks such as type tests (for narrowing operations), null pointer
tests, and array bounds tests detect conditions that would cause a
fault or illegal access and throw a language-level runtime excep-
tion instead.

Figure 2 shows Java-like bytecode instructions (using pseudo-
registers in place of stack locations for clarity) for the code of
Figure 1. The Java type system guarantees that variable b has type
B at compile time, while the getfield instruction guarantees non-
null access by testing for null at runtime. The check and the static
verifier together guarantee that the load operation will not trigger
an illegal memory access.

2.2 Safety in a Low-Level Representation
The Java bytecode format was not intended to be an intermedi-
ate program representation for an optimizing compiler. There are
a number of reasons why such a format is not suitable, but here we

ifnull a goto EXIT
L :

ifeq done goto EXIT
b := checkcast(a, B)
t1 := getfield(b, B::x)
· · ·
goto L

EXIT :

Figure 2. Field load with Java-like bytecode

if a = null goto EXIT
L :

if done = 0 goto EXIT
checkcast(a, B)
checknull(a)
t2 := getfieldaddr(a, B::x)
t1 := ld(t2)
· · ·
goto L

EXIT :

Figure 3. Field load lowered in erasure-style representation

will focus only on those related to safety. First, bytecodes hide re-
dundant check elimination opportunities. For example, in Figure 2,
optimizations can eliminate the null check built into the getfield
instruction because of the ifnull instruction. Even though sev-
eral operations have built-in exception checks, programmers usu-
ally write their code to ensure that these checks never fail, so such
optimization opportunities are common in Java programs.

Second, extraneous aliasing introduced to encode safety prop-
erties hides optimization opportunities. In Figures 1 and 2, vari-
able b represents a copy of a that has the type B. Any use of a
that requires this type information must use b instead. While this
helps static verification, it hinders optimization. The field access
must establish that b is not null, even though the ifnull statement
establishes that property on a. To eliminate the extra check, a re-
dundancy elimination optimization must reason about aliasing due
to cast operations; this is beyond the capabilities of standard algo-
rithms [16, 5].

In the absence of a mechanism for tracking safety dependences,
STARJIT would lower a code fragment like this to one like that
in Figure 3. Note that the ld operation is potentially unsafe and is
safety dependent on the null check. In this case, however, the safety
dependence between the null check and the load is not explicit. Al-
though the instructions are still (nearly) adjacent in this code, there
is no guarantee that future optimizations will leave them so. Fig-
ure 4 roughly illustrates the code that STARJIT would produce for
our example. Redundant checks are removed by a combination of
partial loop peeling (to expose redundant control flow) and com-
mon subexpression elimination. The invariant address field calcu-
lation is hoisted via code motion. In this case, the dependence of the
load on the operations that guarantee its safety (specifically, the if
and checkcast statements) has become obscured. We refer to this
as an erasure-style low-level representation, as safety information
is effectively erased from the program.

An alternative representation embeds safety information di-
rectly into the values and their corresponding types. The Java lan-
guage already does this for type refinement via cast operations.
This approach also applies to null checks, as shown in Figure 5. The
SafeTSA representation takes this approach, extending it to array
bounds checks [25, 2] as well. We refer to this as a refinement-style
representation. In this representation, value dependences preserve
the safety dependence between a check and a load. To preserve

t2 := getfieldaddr(a, B::x)
if a = null goto EXIT
if done = 0 goto EXIT
checkcast(a, B)

L :
t1 := ld(t2)
· · ·
if done 6= 0 goto L

EXIT :

Figure 4. Field load optimized in erasure-style representation

if a = null goto EXIT
L :

if done = 0 goto EXIT
b := checkcast(a, B)
t3 := checknull(b)
t2 := getfieldaddr(t3, B::x)
t1 := ld(t2)
· · ·
goto L

EXIT :

Figure 5. Field load lowered in refinement-style representation

safety, optimizations must preserve the value flow between the
check and the load. Check elimination operations (such as the
checknull in Figure 5) may be eliminated by optimization, but
the values they produce (e.g., t2) must be redefined in the process.

From an optimization standpoint, a refinement-style represen-
tation is not ideal. The safety dependence between the check and
the load is not direct. Instead, it is threaded through the address
field calculation, which is really just an addition operation. While
the load itself cannot be performed until the null test, the address
calculation is always safe. A code motion or instruction scheduling
compiler optimization should be free to move it above the check if
it is deemed beneficial. In Figure 3, it is clearly legal. In Figure 5,
it is no longer possible. The refinement-style representation adds
artificial constraints to the program to allow safety to be checked.
In this case, the address calculation is artificially dependent on the
check operation.

A refinement-style representation also obscures optimization
opportunities by introducing multiple names for the same value.
Optimizations that depend on syntactic equivalence of expressions
(such as the typical implementation of redundancy elimination) be-
come less effective. In Figure 3, a is syntactically compared to
null twice. In Figure 5, this is no longer true. In general, syntac-
tically equivalent operations in an erasure-style representation may
no longer be syntactically equivalent in a refinement-style repre-
sentation.

2.3 A Proof Passing Representation
Neither the erasure-style nor refinement-style representations pre-
cisely represent safety dependences. The erasure-style representa-
tion omits them altogether, while the refinement-style representa-
tion encodes them indirectly. As a result, the erasure-style rep-
resentation is easy to optimize but difficult to verify, while the
refinement-style is difficult to optimize but easy to verify.

To bridge this gap, we propose the use of a proof passing
representation that encodes safety dependence directly into the
program representation through proof variables. Proof variables act
as capabilities for unsafe operations (similar to the capabilities of
Walker et al. [26]). The availability of a proof variable represents
the availability of a proof that a safety property holds. A potentially
unsafe instruction must use an available proof variable to ensure

[s1, s2] if a = null goto EXIT
L :

if done = 0 goto EXIT
s3 := checkcast(a, B)
s4 := checknull(a)
t2 := getfieldaddr(a, B::x)
s5 := pfand(s3, s4)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 6. Field load lowered in a proof passing representation

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

L :
if done = 0 goto EXIT
s3 := checkcast(a, B)
s4 := s1

s5 := pfand(s3, s4)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 7. Field load with CSE and Code Motion

contextual safety. This methodology relates closely to mechanisms
proposed for certified code by Crary and Vanderwaart [10] and
Shao et al. [23] in the context of the lambda calculus. We discuss
the relationship of our approach to this work in Section 7.

Proof variables do not consume any physical resources at run-
time: they represent abstract values and only encode safety de-
pendences. Nevertheless, they are first-class constructs in our rep-
resentation. They are generated by interesting control points and
other relevant program points, and consumed by potentially unsafe
instructions as operands guaranteeing safety. Most optimizations
treat proof variables like other program variables.

Figure 6 demonstrates how we represent a load operation in a
proof passing representation. As in Figure 5, we represent safety
through value dependences, but instead of interfering with existing
values, we insert new proof variables that directly model the safety
dependence between the load and both check operations.

Figures 7 to 10 represent the relevant transformations performed
by STARJIT to optimize this code. In Figure 7, we illustrate two op-
timizations. First, STARJIT’s common subexpression elimination
pass eliminates the redundant checknull operation. When STAR-
JIT detects a redundant expression in the right hand side of an in-
struction, it replaces that expression with the previously defined
variable. The if statement defines the proof variable s1 if the test
fails. This variable proves the proposition a 6= null. At the defi-
nition of s4, the compiler detects that a 6= null is available, and
redefines s4 to be a copy of s1. STARJIT updates a redundant proof
variable the same way as any other redundant variable.

Second, STARJIT hoists the definition of t2, a loop invariant
address calculation, above the loop. Even though the computed ad-
dress may be invalid at this point, the address calculation is always
safe; we require a proof of safety only on a memory operation that
dereferences the address.

Figure 8 shows a step of copy propagation, which propagates s1

into the load instruction and eliminates the use of s4, allowing dead
code elimination to remove the definition of s4.

Figure 9 illustrates the use of partial loop peeling to expose re-
dundant control flow operations within the loop. This transforma-

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

L :
if done = 0 goto EXIT
s3 := checkcast(a, B)
s5 := pfand(s3, s1)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 8. Field load with Copy Propagation

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT
if done = 0 goto EXIT
s1
3 := checkcast(a, B)

L :
s2
3 := φ(s1

3, s3
3)

s5 := pfand(s2
3, s1)

t1 := ld(t2) [s5]
· · ·
if done = 0 goto EXIT
s3
3 := checkcast(a, B)
goto L

EXIT :

Figure 9. Field load with Partial Loop Peeling

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT
if done = 0 goto EXIT
s3 := checkcast(a, B)
s5 := pfand(s3, s1)

L :
t1 := ld(t2) [s5]
· · ·
if done 6= 0 goto L

EXIT :

Figure 10. Field load with 2nd CSE and Branch Reversal

tion duplicates the test on done and the checkcast operation, and
makes the load instruction the new loop header. The proof variable
s3 is now defined twice, where each definition establishes that a
has type B on its corresponding path. The compiler leverages SSA
form to establish that the proof variable is available within the loop.

Finally, in Figure 10, another pass of common subexpression
elimination eliminates the redundant checkcast. Copy propaga-
tion propagates the correct proof variable, this time through a re-
dundant phi instruction. Note, that this final code is equivalent to
the erasure-style representation in Figure 4 except that proof vari-
ables provide a direct representation of safety. In Figure 10, it is
readily apparent that the if and checkcast statements establish
the safety of the load instruction.

In the next section we formalize our approach as a small core
language, and the following sections show its use and preservation
across compiler optimizations and extension to full Java.

3. Core Language
In this section we describe a small language that captures the main
ideas of explicit safety dependences through proof variables. As
usual with core languages, we wish to capture just the essence of
the problem and no more. The issue at hand is safety dependences,
and to keep things simple we will consider just one such depen-

(P, L1, n1, b.i) 7→ (P, L2, n2, pc) where:

P (b.i) L2 n2 pc Side conditions
p L1{x1 := L1(x2)} n1 b.(i + 1) p[n1] = x1 := x2

x : τ := i L1{x := i} n1 b.(i + 1)
x1 : τ := x2 L1{x1 := L1(x2)} n1 b.(i + 1)
x1 : τ := newarray(x2, x3) L1{x1 := v1} n1 b.(i + 1) L1(x2) = n, L1(x3) = v3, v1 = 〈v3, . . . , v3| {z }

n

〉

x1 : τ := newarray(x2, x3) L1{x1 := v1} n1 b.(i + 1) L1(x2) = i, i < 0, v1 = 〈〉
x1 : τ := len(x2) L1{x1 := n} n1 b.(i + 1) L1(x2) = 〈v0, . . . , vn−1〉
x1 : τ := base(x2) L1{x2 := v@0} n1 b.(i + 1) L1(x2) = v, v = 〈v′〉
x1 : τ := x2 bop x3 L1{x1 := i4} n1 b.(i + 1) L1(x2) = i2, L1(x3) = i3, i4 = i2 bop i3
x1 : τ := x2 bop x3 L1{x1 := v@i4} n1 b.(i + 1) L1(x2) = v@i2, L1(x3) = i3, i4 = i2 bop i3
x1 : τ := ld(x2) [x3] L1{x1 := vi} n1 b.(i + 1) L1(x2) = 〈v0, . . . , vn〉@i, 0 ≤ i ≤ n
x1 : τ := pffact(x2) L1{x1 := true} n1 b.(i + 1)
x : τ := pfand(y) L1{x := true} n1 b.(i + 1)
[x1 : τ1, x2 : τ2] if x3 rop x4 goto b′ L1{x1 := true} edgeP (b, b + 1) (b + 1).0 L1(x3) = i3, L1(x4) = i4,¬(i3 rop i4)
[x1 : τ1, x2 : τ2] if x3 rop x4 goto b′ L1{x2 := true} edgeP (b, b′) b′.0 L1(x3) = i3, L1(x4) = i4, i3 rop i4
goto b′ L1 edgeP (b, b′) b′.0

Figure 11. Operational semantics

dence, namely, bounds checking for arrays. In particular, we con-
sider a compiler with separate address arithmetic, load, and store
operations, where the type system must ensure that a load or store
operation is applied only to valid pointers. Moreover, since the ba-
sic safety criteron for a store is the same as for a load, namely, that
the pointer is valid, we consider only loads; adding stores to our
core language adds no interesting complications. Not considering
stores further allows us to avoid modelling the heap explicitly, but
to instead use a substitution semantics which greatly simplifies the
presentation.

The syntax of our core language is given as follows:

Prog. States S ::= (P, L, n, pc)
Programs P ::= B
Blocks B ::= p; ι; c
Phi Instructions p ::= x : τ := φ(x)
Instructions ι ::= x : τ := r
Right-hand sides r ::= i | x | newarray(x1, x2) |

len(x) | base(x) |
x1 bop x2 | ld(x1) [x2] |
pffact(x) | pfand(x)

Binary Ops bop ::= + | −
Transfers c ::= goto n | halt |

[x1 : τ1, x2 : τ2] if x3 rop x4

goto n
Relations rop ::= <|≤|=|6=
Environments L ::= x := v
Values v ::= i | 〈v〉 | 〈v〉@i | true
Prog. Counters pc ::= n1.n2

Here i ranges over integer constants, x ranges over variables, n
ranges over natural numbers, and φ is the phi-operation of SSA.
We use the bar notation introduced in Featherweight Java [15]: B
abbreviates B0, . . . , Bn, x := v abbreviates x0 := v0, . . . , xn :=
vn, et cetera. We also use the bar notation in type rules to ab-
breviate a sequence of typing judgements in the obvious way.
In addition to the grammar above, programs are subject to a
number of context-sensitive restrictions. In particular, the n in
[x1 : τ1, x2 : τ2] if x3 rop x4 goto n and goto n must be a
block number in the program (i.e., if the program is B0, . . . , Bm

then 0 ≤ n ≤ m); the transfer in the last block must be a goto
or halt; the number of variables in a phi instruction must equal the
number of incoming edges (as defined below) to the block in which
it appears; the variables assigned in the phi instructions of a block
must be distinct.

Informally, the key features of our language are the following.
The operation base(x) takes an array and creates a pointer to the
element at index zero. The arithmetic operations can be applied to
such pointers and an integer to compute a pointer to a different in-
dex. The ld(x1) [x2] operation loads the value pointed to by the
pointer in x1. The variable x2 is a proof variable and conceptually
contains a proof that x1 is a valid pointer: that is, that it points to an
in-bounds index. The typing rules ensure that x1 is valid by requir-
ing x2 to contain an appropriate proof. The operations pffact(x)
and pfand(x) construct proofs. For pffact(x) a proof of a for-
mula based on the definition of x is constructed. For example, if
x’s definition is x : int := len(y) then pffact(x) constructs a
proof of x = len(y). A complete definition of the defining facts
of instructions appears in Figure 14. For pfand(x1, . . . , xn), x1

through xn are also proof variables, and a proof of the conjunction
is returned. Values of the form 〈v0, . . . , vn〉@i represent pointers
to array elements: in this case a pointer to the element at index i
of an array of type 〈v0, . . . , vn〉. Such a pointer is valid if i is in
bounds (that is, if 0 ≤ i ≤ n) and invalid otherwise. The typing
rules must ensure that only valid pointers are loaded from, with
proof variables used to provide evidence of validity. The final un-
usual aspect of the language is that branches assign proofs to proof
variables that reflect the condition being branched on. For exam-
ple, in the branch [x1 : τ1, x2 : τ2] if x3=x4 goto n, a proof of
x3 6= x4 is assigned to x1 along the fall-through edge, and a proof
of x3 = x4 is assigned to x2 along the taken edge. These proofs
can then be used to discharge validity requirements for pointers.

To state the operational semantics and type system we need a
few definitions. The program counters of a program pcs(P) are
{b.i | P = B0, . . . , Bm ∧ b ≤ m ∧ Bb = p; ι1; · · · ; ιn; c ∧ i ≤
n+1}. We write P (b) for Bb when P = B0, . . . , Bn and b ≤ n; if
P (b) = p; ι1; . . . ; ιm; c then P (b.n) is p when n = 0, and ιn when
1 ≤ n ≤ m and c when n = m + 1. The edges of a program P ,
edges(P), are as follows. The entry edge is (−1, 0). If P (n) ends
in [x1 : τ1, x2 : τ2] if x3 rop x4 goto n′ then there are edges
(n, n+1), called the fall-through edge, and (n, n′), called the taken
edge. If P (n) ends in goto n′ then there is an edge (n, n′). For a
given P and n2 the edges (n1, n2) ∈ edges(P) are numbered from
zero in the order given by n1; edgeP (n1, n2) is this number, also
called the incoming edge number of (n1, n2) into n2.

Operational Semantics A program P is started in the state
(P, ∅, 0, 0.0). The reduction relation that maps one state to the
next is given in Figure 11. Note that the third component of a pro-

gram state tracks which incoming edge led to the current program
counter—initially this is the entry edge (−1, 0), and is updated by
transfers. It is used by phi instructions to select the correct variable.
The notation p[i] denotes x1 := x1i, . . . , xn := xni when p =
x1 : τ1 := φ(x11, . . . , x1m), . . . , xn : τn := φ(xn1, . . . , xnm).
A program terminates when in a state of the form (P, L, n, pc)
where P (pc) = halt. A program state is stuck if it is irreducible
and not a terminal state. Stuck states all represent type errors that
the type system should prevent. Note that the array creation opera-
tion must handle negative sizes. Our implementation would throw
an exception, but since the core language does not have exceptions,
it simply creates a zero length array if a negative size is requested.

In the operational semantics, the proof type has the single in-
habitant true, upon which no interesting operations are defined.
Proofs in this sense are equivalent to unit values for which non-
escaping occurrences can be trivially erased when moving to an
untyped setting. This “proof erasure” property is precisely analo-
gous to the “coercion erasure” property of the coercion language of
Vanderwaart et al. [24]. In practice, uses of proof variables in the
STARJIT compiler are restricted such that all proof terms can be
elided during code generation and consequently impose no over-
head at run time. While we believe that it would be straightforward
to formalize the syntactic restrictions that make this possible, we
choose for the sake of simplicity to leave this informal here.

Type System The type system has two components: the SSA
property and a set of typing judgements. The SSA property ensures
both that every variable is assigned to at most once in the program
text (the single assignment property) and that all uses of variables
are dominated by definitions of those variables. In a conventional
type system, these properties are enforced by the typing rules. In
particular, the variables that are listed in the context of the typing
judgement are the ones that are in scope. For SSA IRs, it is more
convenient to check these properties separately.

The type checker must ensure that during execution each use of
a variable is preceded by an assignment to that variable. Since the i-
th variable of a phi instruction is used only if the i-th incoming edge
was used to get to the block, and the proof variables in an if transfer
are assigned only on particular out-going edges, we give a rather
technical definition of points at which variables are assigned or
used. These points are such that a definition point dominating a use
point implies that assignment will always precede use. These points
are based on an unconventional notion of control-flow graph, to
avoid critical edges which might complicate our presentation. For
a program P with blocks 0 to m, the control-flow graph consists
of the nodes {0, . . . , m} ∪ edges(P) and edges from each original
node n to each original edge (n, n′) and similarly from (n, n′)
to n′. The definition/use points, du(P), are pcs(P) ∪ {b.0.i |
P (b.0) = p0, . . . , pn ∧ 0 ≤ i ≤ n} ∪ {e.i | e ∈ edges(P) ∧ i ∈
{0, 1}}.

Figure 13 gives the formal definition of dominance, defini-
tion/use points, and the SSA property.

The syntax of types is:

Types τ ::= int | array(τ) | ptr?〈τ〉 | S(x) | pf(F)

Facts F ::= e1 rop e2 | F1 ∧ F2

Fact Exps. e ::= i | x | len(x) | e1 bop e2 | x@e
Environments Γ ::= x : τ

The type ptr?〈τ〉 is given to pointers that, if valid, point to values
with type τ (the ? indicates that they might not be valid). The
singleton type S(x) is given to things that are equal to x. The
type pf(F) is given to proof variables that contain a proof of the
fact F . Facts include arithmetic comparisons and conjunction. Fact
expressions include integers, variables, array lengths, arithmetic
operations, and a subscript expression—the fact expression x@e
stands for a pointer that points to the element at index e of array x.

Judgement Meaning
Γ ` τ1 ≤ τ2 τ1 is a subtype of τ2 in Γ
` F1 =⇒ F2 F1 implies F2

Γ ` p p is safe in environment Γ
Γ `P ι ι is safe in environment Γ
Γ ` c c is safe in environment Γ
`P τ at du τ well-formed type at du in P
`P Γ environment Γ well-formed in P
` P P is safe

Figure 12. Typing judgements

The judgements of the type system are given in figure 12. Most
of the typing rules are given in Figure 14. Typing environments
Γ state the types that variables are supposed to have. The rules
check that when assignments are made to a variable, the type of the
assigned value is compatible with the variable’s type. For example,
the judgement Γ ` int ≤ Γ(x) in the rule for x : τ := i checks
that integers are compatible with the type of x. The rules also check
that uses of a variable have a type compatible with the operation.
For example, the rule for load expects a proof that the pointer, x2,
is valid, so the rule checks that x3’s type Γ(x3) is a subtype of
pf(x@0≤x2∧x2<x@len(x)) for some x. It is this check along with the
rules for proof value generation and the SSA property that ensure
that x2 is valid.

Given these remarks, the only other complicated rule is for phi
instructions. In a loop a phi instruction might be used to combine
two indices, and the compiler might use another phi instruction to
combine the proofs that these indices are in bounds. For example,
consider this sequence:

x1 : int := φ(x2, x3)
y1 : pf(0≤x1) := φ(y2, y3)

where y2 : pf(0≤x2) and y3 : pf(0≤x3). Here the types for y1,
y2, and y3 are different and in some sense incompatible, but are
intuitively the correct types. The rule for phi instructions allows
this typing. In checking that y2 has a compatible type, the rule
substitutes x2 for x1 in y1’s type to get pf(0≤x2), which is the type
that y2 has; similarly for y3.

For a program P that satisfies the SSA property, every variable
mentioned in the program has a unique definition point, and that
definition point is decorated with a type. Let vt(P) denote the
environment formed from extracting these variable/type pairs. A
program P is well formed (` P) if:

1. P satisfies the SSA property,
2. `P vt(P),
3. vt(P) ` p for every p in P ,
4. vt(P) `P ι for every instruction ι in P , and
5. vt(P) ` c for every transfer c in P .

The type system is safe:

THEOREM 1 (Type Safety).
If ` P and (P, ∅, 0, 0.0) 7→∗ S then S is not stuck.

A proof of this theorem appears in the companion technical re-
port [17]. The proof takes the standard high-level form of showing
preservation and progress lemmas, as well as some lemmas partic-
ular to an SSA language. It is important to note that safety of the
type system is contingent on the soundness of the decision proce-
dure for ` F1 =⇒ F2. In the proof, a judgement corresponding
to truth of facts in an environment is given. In this setting, the as-
sumption of logical soundness corresponds to the restriction that in
any environment in which F1 is true, F2 is also true.

Defs and Uses:
If P (b.i) = x : τ := r then program counter b.i defines x, furthermore, b.i is a use of the ys where r has the following forms:

y | newarray(y1, y2) | len(y) | base(y) | y1 bop y2 | ld(y1) [y2] | pffact(y) | pfand(y)

If P (b.i) = (p0, . . . , pn) and pj = xj : τj := φ(yj1, . . . , yjm) then b.i.j defines each xj and ek.1 uses each yjk where ek is the k-th incoming edge
of b. If P (b.i) = [x1 : τ1, x2 : τ2] if y1 rop y2 goto n then e1.0 defines x1 and e2.0 defines x2 where e1 and e2 are the fall-through and taken edges
respectively, and b.i uses y1 and y2. If x has a unique definition/use point in P that defines it, then defP (x) is this point.

Dominance:

• In program P , node n dominates node m, written domP (n, m), if every path in the control-flow graph of P from (−1, 0) to m includes n.
• In program P , definition/use point n1.i1 strictly dominates definition/use point n2.i2, written sdomP (n1.i1, n2.i2) if n1 = n2 and i1 < i2 (here i1 or

i2 might be a dotted pair 0.j, so we take this inequality to be lexicographical ordering) or n1 6= n2 and domP (n1, n2).

Single Assignment:
A program satisfies the single-assignment property if every variable is defined by at most one definition/use point in that program.

In Scope:
A program P satisfies the in-scope property if for every definition/use point du1 that uses a variable there is a definition/use point du2 that defines that
variable and sdomP (du2, du1).

SSA:
A program satisfies the Single Static Assignment (SSA) property if it satisfies the single-assignment and in-scope properties. Note that a program that satisfies
SSA has a unique definition for each variable mentioned in the program.

Figure 13. SSA definitions

`P τ at du `P Γ

fv(τ) ⊆ inscopeP (du)

`P τ at du

`P τ at defP (x)

`P x : τ

Γ ` τ1 ≤ τ2 ` F1 =⇒ F2

Γ ` int ≤ int

Γ ` τ1 ≤ τ2

Γ ` array(τ1) ≤ array(τ2)

Γ ` τ1 ≤ τ2

Γ ` ptr?〈τ1〉 ≤ ptr?〈τ2〉

Γ ` S(x) ≤ S(x) Γ ` S(x) ≤ Γ(x)

` F1 =⇒ F2

Γ ` pf(F1) ≤ pf(F2)

Γ ` τ1 ≤ τ2 Γ ` τ2 ≤ τ3

Γ ` τ1 ≤ τ3

The judgement ` F1 =⇒ F2 is some appropriate decision procedure for our fact language.
Γ ` p Γ `P ι Γ ` c

Γ ` S(xij) ≤ Γ(xi){x1, . . . , xn := x1j , . . . , xnj}
Γ ` x1 : τ1 := φ(x11, . . . , x1m), . . . , xn : τn := φ(xn1, . . . , xnm)

Γ ` int ≤ Γ(x)

Γ `P x : τ := i

Γ ` S(x2) ≤ Γ(x1)

Γ `P x1 : τ := x2

Γ ` Γ(x2) ≤ int Γ ` array(Γ(x3)) ≤ Γ(x1)

Γ `P x1 : τ := newarray(x2, x3)

Γ ` Γ(x2) ≤ array(τ2) Γ ` int ≤ Γ(x1)

Γ `P x1 : τ := len(x2)

Γ ` Γ(x2) ≤ array(τ2) Γ ` ptr?〈τ2〉 ≤ Γ(x1)

Γ `P x1 : τ := base(x2)

Γ ` Γ(x2) ≤ int Γ ` Γ(x3) ≤ int Γ ` int ≤ Γ(x1)

Γ `P x1 : τ := x2 bop x3

Γ ` Γ(x2) ≤ ptr?〈τ2〉 Γ ` Γ(x3) ≤ int Γ ` ptr?〈τ2〉 ≤ Γ(x1)

Γ `P x1 : τ := x2 bop x3

Γ ` Γ(x2) ≤ ptr?〈τ2〉 Γ ` Γ(x3) ≤ pf(x@0≤x2∧x2<x@len(x)) Γ ` τ2 ≤ Γ(x1)

Γ `P x1 : τ := ld(x2) [x3]

Γ ` pf(deffactP (x2)) ≤ Γ(x1)

Γ `P x1 : τ := pffact(x2)

Γ ` Γ(y1) ≤ pf(F1) · · · Γ ` Γ(yn) ≤ pf(Fn) Γ ` pf(F1∧···∧Fn) ≤ Γ(x1)

Γ `P x : τ := pfand(y1, . . . , yn)

Γ ` Γ(x3) ≤ int Γ ` Γ(x4) ≤ int Γ ` pf(¬(x3 rop x4)) ≤ Γ(x1) Γ ` pf(x3 rop x4) ≤ Γ(x2)

Γ ` [x1 : τ1, x2 : τ2] if x3 rop x4 goto n

Γ ` goto n Γ ` halt

deffactP (x) The fact deffactP (x) depends upon the defining instruction of x in P , and is given by these rules:

deffactP (x : τ := i) = x=i
deffactP (x : τ := len(x′)) = x=len(x′)
deffactP (x : τ := base(x′)) = x = x′@0
deffactP (x : τ := x1 bop x2) = x=x1 bop x2

Figure 14. Typing rules

The typing rules presented are for the most part syntax-directed,
and can be made algorithmic. A consideration is that the rule for
load must determine the actual array variable, which is not apparent
from the conclusion. In general, the decision prodecure only needs
to verify that the rule holds for one of the arrays available at that
program point. In practice, the correct array can be inferred by ex-
amining the type of the proof variable. We believe that judgements
on facts may be efficiently decided by an integer linear program-
ming tool such as the Omega Calculator [22] with two caveats.
First, such tools reason over Z rather than 32- or 64-bit integers.
Second, they restrict our fact language for integer relations (and,
thus, compiler reasoning) to affine expressions. This is, however,
sufficient to capture current STARJIT optimizations.

4. Compiler optimizations
In this section we examine compiler optimizations in the context of
the core language. We demonstrate how an optimizing compiler can
preserve both proof variables and their type information. We argue
that our ideas greatly simplify this process. In previous work, an im-
plementer would need to modify each optimization to update safety
information. In our representation, we leverage existing compiler
infrastructure to do the bulk of the work. In particular, most control-
flow or data-flow optimizations require virtually no changes at all.
Others that incorporate algebraic properties only need to be modi-
fied to record the compiler’s reasoning. In the next section we will
discuss how these ideas can be extended from the core language to
full Java.

In general, there are two ways in which an optimization can
maintain the correctness of the proofs embedded in the program.
First, it can apply the transformation to both computation and proof
simultaneously. This is sufficient for the majority of optimizations.
Second, it can create new proofs for the facts provided by the
original computation. As we show below, this is necessary for
the few optimizations that infer new properties that affect safety.
In the rest of this section we show how these general principles
apply to individual compiler optimizations on a simple example.
For this example, we show how to generate a low-level intermediate
representation that contains safety information and how to preserve
this information through several compiler optimizations, such as
loop invariant code motion, common subexpression elimination,
array bounds check elimination, strength reduction of array element
pointer, and linear function test replacement.

The example we will consider, in pseudo code, is:

for (i=0; i<a.length; i++) {
· · · = a[i];

}
Where we assume that a is a non-null integer array, that a is not
modified in the loop, and that the pseudo code array subscripting
has an implicit bounds check. Although this example does not
reflect the full complexity of Java, it is sufficient to illustrate the
main ideas of propagating safety information through the compiler
optimizations. Section 5 discusses additional issues in addressing
full Java.

The first compilation step for our example lowers the program
into a low-level representation suitable for optimization, as shown
in Figure 15. In our system, lowering generates instructions that ex-
press the computation and any required proofs of the computation’s
safety. For example, a typical compiler would expand an array ele-
ment access a[i] into the following sequence: array bounds checks,
computation of the array element address, and a potentially unsafe
load from that address. In our system, the compiler also generates
proof variables that show that the array index i is within the ar-
ray bounds (q4 for the lower bound and q6 for the upper bound)
and that the load accesses an element i of the array a (proof vari-

i1 : int :=0
uB : int :=len(a)

LOOP :
i2 : int :=φ(i1, i3)
[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

aLen : int :=len(a)
q3 : pf(aLen=len(a)) :=pffact(aLen)

q4 : pf(0≤i2) :=checkLowerBound(i2, 0)

q5 : pf(i2<aLen) :=checkUpperBound(i2, aLen)

q6 : pf(i2<len(a)) :=pfand(q3, q5)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)
addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val
i3 : int := i2+1

goto LOOP
EXIT :

. . .

Figure 15. Low-level representation for array load in loop

i1 : int :=0
uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

LOOP :
i2 : int :=φ(i1, i3)
[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q4 : pf(0≤i2) :=checkLowerBound(i2, 0)

q5 : pf(i2<uB) :=checkUpperBound(i2, uB)

q6 : pf(i2<len(a)) :=pfand(q3, q5)

addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val
i3 : int := i2+1

goto LOOP
EXIT :

. . .

Figure 16. IR after CSE and loop invariant code motion

able q9). The conjunction of these proofs is sufficient to type check
the load instruction according to the typing rules in Figure 14. The
proof variables are generated by the explicit array bounds checks
(which we use as syntactic sugar for the branches that transfer con-
trol to a halt instruction if the bounds check fails) and by pffact
and pfand statements that encode arithmetic properties of the ad-
dress computation as the types of proof variables.

Next, we take the example in Figure 15 through several common
compiler optimizations that are employed by STARJIT to generate
efficient code for loops iterating over arrays (Figures 16 - 19). The
result is highly-optimized code with an embedded proof of program
safety.

We start, in Figure 16, by applying several basic data-flow op-
timizations such as CSE, dead code elimination, and loop invari-
ant code motion. An interesting property of these optimizations
in our system is that they require no modification to preserve the

i1 : int :=0
q11 : pf(i1=0) :=pffact(i1)

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

LOOP :
i2 : int :=φ(i1, i3)
q4 : pf(0≤i2) :=φ(q11, q13)

[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q6 : pf(i2<len(a)) :=pfand(q3, q1)

addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val
i3 : int := i2+1
q12 : pf(i3=i2+1) :=pffact(i3)

q13 : pf(0≤i3) :=pfand(q4, q12)

goto LOOP
EXIT :

. . .

Figure 17. IR after bound check elimination

safety proofs. They treat proof variables identically to other terms,
and, thus, are automatically applied to both the computation and
the proofs. For example, common subexpression elimination and
copy propagation replace all occurrences of aLen with uB, includ-
ing those that occur in proof types. The type of the proof variable
q3 is updated to match its new definition pffact(uB).

In Figure 17, we illustrate array bounds check elimination. In
the literature [4], this optimization is typically formulated to re-
move redundant bounds checks without leaving any trace of its rea-
soning in the program. In such an approach, a verifier must effec-
tively repeat the optimization reasoning to prove program safety. In
our system, an optimization cannot eliminate an instruction that de-
fines a proof variable without constructing a new definition for that
variable or removing all uses of that variable. Intuitively, the com-
piler must record in a new definition its reasoning about why the
eliminated instruction was redundant. Consider the bounds checks
in Figure 16. The lower bound check that verifies that 0≤i2 is
redundant because i2 is a monotonically increasing variable with
the initial value 0. Formally, the facts that i1=0, i2=φ(i1, i3) and
i3=i2+1 imply that 0≤i2. This reasoning is recorded in the trans-
formed program through a new definition of the proof variable q4

and the additional proof variables q11 and q13. We use SSA to con-
nect these proofs at the program level. The upper bound check that
verifies that i2<len(a) (proof variable q5) is redundant because
the if statement guarantees the same condition (proof variable q1).
Because the new proof for the fact q5 is already present in the pro-
gram, the compiler simply replaces all uses of of q5 with q1.

In Figure 18, we perform operator strength reduction (OSR) [9]
to find a pointer that is an affine expression of a monotonically in-
creasing or decreasing loop index variable and to convert it into an
independent induction variable. In our example, OSR eliminates i
from the computation of addr by incrementing it directly. Because
variable addr is used in the q8 := pffact(addr) statement, the
compiler cannot modify the definition of addr without also mod-
ifying the definition of q8 (otherwise, the transformed program
would not type check). Informally, the compiler must reestablish
the proof that the fact trivially provided by the original definition
still holds. In our system, OSR is modified to construct a new proof
for the fact trivially implied by the original pointer definition by

i1 : int :=0
q11 : pf(i1=0) :=pffact(i1)

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)
addr1 : ptr?〈int〉 :=aBase+i1
q14 : pf(addr1=aBase+i1) :=pffact(addr1)

LOOP :
i2 : int :=φ(i1, i3)
q4 : pf(0≤i2) :=φ(q11, q13)

addr2 : ptr?〈int〉 :=φ(addr1, addr3)
q8 : pf(addr2=aBase+i2) :=φ(q14, q16)

[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q6 : pf(i2<len(a)) :=pfand(q3, q1)

q9 : pf(addr2=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr2) [q10]
. . . : . . . :=val
i3 : int := i2+1
q12 : pf(i3=i2+1) :=pffact(i3)

addr3 : ptr?〈int〉 :=addr2+1
q15 : pf(addr3=addr2+1) :=pffact(addr3)

q13 : pf(0≤i3) :=pfand(q4, q12)

q16 : pf(addr3=aBase+i3) :=pfand(q8, q12, q15)

goto LOOP
EXIT :

. . .

Figure 18. IR after strength reduction of element address

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase : ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)
addr1 : ptr?〈int〉 :=aBase
q14 : pf(addr1=aBase) :=pffact(addr1)

addrUB : ptr?〈int〉 :=aBase+uB
q17 : pf(addrUB=aBase+uB) :=pffact(addrUB)

LOOP :
addr2 : ptr?〈int〉 :=φ(addr1, addr3)
q4 : pf(aBase≤addr2) :=φ(q14, q13)

[q1 : pf(addr2<addrUB), q2 : . . .] := if addrUB≤addr2
goto EXIT

q6 : pf(addr2<aBase+len(a)) :=pfand(q3, q1, q17)

q10 : pf(a@0≤addr2<a@len(a)) :=pfand(q4, q6, q7)

val : int :=ld(addr2) [q10]
. . . : . . . :=val
addr3 : ptr?〈int〉 :=addr2+1
q15 : pf(addr3=addr2+1) :=pffact(addr3)

q13 : pf(aBase≤addr3) :=pfand(q4, q15)

goto LOOP
EXIT :

. . .

Figure 19. IR after linear function test replacement

induction on that fact. Again, we leverage SSA to establish the new
proof. In this case, q8 : pf(addr2=aBase+i2) is defined by the phi in-
struction that merges proof variables q14 : pf(addr1=aBase+i1) and
q16 : pf(addr3=aBase+i3).

Finally, we illustrate linear function test replacement (LFTR) [9]
in Figure 19. 1 Classical LFTR replaces the test uB≤i2 in the branch
by a new test addrUB≤addr2. If our program contained no proof
variables, this would allow the otherwise unused base variable i
to be removed from the loop. We augment the usual LFTR pro-
cedure, which rewrites occurrences of the base induction variable
i2 in loop exit tests (and exits) in terms of the derived induction
variable addr2, to also rewrite occurrences of i2 in the types of
proof variables. Finally, to eliminate the original induction variable
altogether, the compiler must replace the inductive proofs on the
original variable (expressed through φ instructions) with proofs in
terms of the derived induction variable. In this case, the compiler
must replace the proof that 0≤i2 (established by q11 and q12) with
one that proves aBase≤addr2 (established by q14 and q15). Af-
ter the replacement, the loop induction variable i and any proof
variables that depend upon it are no longer live in the loop, so all
definitions of the variable can be removed. The compiler must re-
move the proof variables whose types reduce to tautologies and
apply further CSE to yield Figure 19.

5. Extensions
Our core language can easily be extended to handle other interest-
ing aspects of Java and CLI. In this section we describe several of
these extensions.

Firstly, we can handle object-model lowering through the use
of our singleton types. Consider an invoke virtual operation. It is
typically lowered into three operations: load the virtual dispatch
table (vtable), load the method pointer from the vtable, call the
method pointer passing the object as an additional argument. In
our system, these operations would look like this:

x : SomeClass := · · ·
t1 : vtable(x) := vtable(x)
t2 : (S(x), int) → int := method(foo : (int) → int, t1)
t3 : int := call(t2)(x, 10)

Here the method foo (taking an integer and returning an integer)
is being invoked on variable x. In the lowered code, variable t1
gets the dependent type vtable(x) meaning that it contains the
vtable from the object currently in x. Variable t2 gets the loaded
method pointer. From the type vtable(x), the typing rules can
determine a precise function type for this method pointer, namely
(S(x), int) → int, where the first argument must be x. The actual
call is the last operation, and here we pass x as an explicit argument.
Since x has type S(x), this operation type checks.

By using singleton types based on term variables, we achieve
a relatively simple type system and still avoid the well known
typing problems with the explicit “this” argument (see [12] and
references). The existing solutions to this typing problem have
much more complicated type systems, with one exception. Chen
and Tarditi [7] have a similarly simple type system for a lowered IR
for class-based object-oriented languages. Like our system, theirs
also has class names as types, and keeps around information about
the class hierarchy, fields, and methods. They also have existentials
with subclass bounds (type variables can be bounded above by a
class, and range over any subclass of that class). They use these
existentials to express the unknown runtime type of any given
object, and thus the type of the explicit “this” argument. They
also have a class representation function that maps class names

1 Note that the code resulting from LFTR is not typable in our core lan-
guage, since we do not allow conditional branches on pointers. Extending
the language to handle this is straightforward, but requires a total ordering
on pointer values which essentially requires moving to a heap-based seman-
tics. Note though that the fact language does permit reasoning about pointer
comparison, as used in the previous examples.

to a record type for objects in the class, and they have coercions
to convert between the two. These ideas could be adapted to our
system instead of our vtable types, and our vtable types could be
adapted to their type system. In summary, both systems are simpler
than existing, more foundational, object encodings. Theirs has type
variables and bounded existentials, ours has singleton types based
on term variables.

Java and CLI also allow null as a value in any class type, and at
runtime this null value must be checked and an exception thrown
before any invocation or field access on an object. We can use our
proof variable technique to track and ensure that these null checks
are done. We simply add a null constant to the fact expression lan-
guage. We can add an operation like p : pf(x6=null) := chknull(x)
to check that x is not null. If x is null then it throws an exception,
if not then it assigns a proof of x6=null to p. Similarly to array-
bounds check elimination, we can eliminate redundant null checks.

To handle exceptions we simply add explicit control flow for
them. Each potentially exception throwing operation will end a ba-
sic block and there will be edges coming out of the block corre-
sponding to exceptions that go to blocks corresponding to the ex-
ception handlers. An important point is that exceptions typically
occur before the assignment of the potentially exception throw-
ing operation, so like the conditional branches of our core lan-
guage, we must treat the definition point as occuring on the fall-
through edge rather than at the end of the basic block. So in both
x : τ := chknull(y) and x : τ := call(y)(y), the variable x is
assigned on the fall-through edge.

We can easily deal with stores to pointers by adding a store
operation of the form st(x, y) [p] where x holds the pointer, y
the value to store, and p a proof that x is valid. The type rule for
this operation is:

Γ ` Γ(x) ≤ ptr?〈τ〉 Γ ` Γ(y) ≤ τ
Γ ` Γ(p) ≤ pf(z@0≤x∧x<z@len(z))

Γ `P st(x, y) [p]

Modifying our formalisation and type soundness proof to accomo-
date stores would be straightforward.

Java and CLI have mutable covariant arrays, and thus require
array-store checks at runtime. In particular, when storing into an
array, the runtime must check that the object being stored is com-
patible with the runtime element type of the array (which could be
a subtype of the static element type). In our implementation we use
types of the form elem(x) to stand for the runtime element type of
array x. The load base operation on x actually returns something of
type ptr?〈elem(x)〉. The array-store check produces a proof value
that can be used to prove that some other variable has type elem(x)
and we have a coercion to use the proof value to change the vari-
able’s type. The end of a lowered array store would look something
like this:

x : array(C) := · · ·
y : C := · · ·
· · ·
p1 : pf(x6=null∧x@0≤t∧t<x@len(x)) := · · ·
p2 : pf(y:elem(x)) := chkst(x, y)
st(t, retype(y, p2)) [p1]

One technicality is worth noting. In order to avoid circularities
between the type system and the fact language, and to avoid making
the fact language’s decision procedure mutually dependent upon
the subtype checker, we restrict the types that can appear in a fact
of the form x : τ to those that do not mention proof types.

Downcasts are similar to store checks, and we can treat them in
a similar way. A chkcast(x : C) operation checks that x is in type
C and returns a proof of this fact, otherwise it throws an exception.
The actual subtype checks performed at runtime in our implementa-

tion are generally done by the virtual machine itself, and the virtual
machine is not type checked by the type system of our JIT. How-
ever, we do partially inline this operation to include some common
fast cases, and to expose some parts to redundant elimination and
CSE. For example, if a object is null then it is in any reference type
and can be stored into any reference array or downcast to any ref-
erence type. Another example is comparing the vtable of an object
against the vtable of a specific class, if these are equal then that ob-
ject is in that class. Such comparisons produce facts in our system
of the form x=null or vtable(x)=vtable(C). We can simply
add axioms to our fact language like ` x=null =⇒ x : C or
` vtable(x)=vtable(C) =⇒ x : C.

6. Implementation Status
The current implementation of the STARJIT compiler generates
and maintains proof variables throughout its compilation process to
enable safe implementation of certain optimizations in the presence
of check elimination (to be described in a forthcoming paper). For
their initially designed role in optimizations, proof variables did not
require proof types: optimizations do not need to know the reason
an optimization was safe, but only its safety dependences. As such,
the current STARJIT representation is similar to that described in
Section 2 with some of the extensions in Section 5.

STARJIT implements all of the optimizations discussed in this
paper as well as more described in [1]. We modified each opti-
mization, if necessary, to correctly handle proof variables. Array
bounds check elimination and operator strength reduction required
the most significant modification, as described in Section 4. For
partial inlining of virtual machine type checking functions, as de-
scribed in Section 5, we updated the definition of proof variables to
established that a variable has the checked type. We also modified
method inlining to properly establish the type of inlined methods.
For each parameter of a method, we added a proof variable that es-
tablished that it had the correct type. When a method is compiled
independently, that proof variable is trivially defined at the method
entry (as parameter types to a method are guaranteed by the run-
time environment). When the method is inlined, the corresponding
proof variables must be defined by the calling method instead. As
method call operations require proof variables for each parameter
in our system, this information is readily available. Most optimiza-
tions, however, did not require significant changes for the reasons
outlined in this paper.

An early version of a type verifier which inferred proof types it-
self was implemented. This implementation was particularly help-
ful in finding bugs within STARJIT, but was insufficient for com-
plete verification of optimized code. In particular, the inference al-
gorithm was insufficient for some more complicated optimization
situations, such as the LFTR example (without proof type informa-
tion) in Section 4. We are confident that extending the compiler to
use precise proof types for proof variables will be straightforward,
using the framework developed in this paper.

7. Related Work
As far as we are aware, SafeTSA [25, 2] is the only other example
of a type-safe SSA representation in the literature. The motivation
of their work is rather different than ours. SafeTSA was designed
as an alternative to Java bytecode, whereas our representation is de-
signed to be a low-level intermediate language for a bytecode com-
piler. SafeTSA can represent certain optimizations, such as CSE
and limited check elimination, that Java bytecode does not. How-
ever, in our classification in Section 2, SafeTSA is a refinement-
style representation and, thus, cannot represent the effect of many
of the low-level optimizations we discuss here. For example, it can-
not represent the safety of check elimination based upon a previous

branch or the construction of an unsafe memory address as illus-
trated in Figure 7. On the other hand, we do not support their notion
of referential security: the property that a program must be safe by
construction.

While most of the work on certified code focuses on the final
machine code representation, there has been previous work on
intermediate representations that allow verification of the memory
safety of highly optimized machine level code. One of the major
differences between the various approaches lies in the degree to
which safety information is made explicit.

On the side of less explicit information are the SpecialJ com-
piler [8] and DTAL [27]. Both approaches record loop invariants,
but not explicit safety dependences. This makes verification harder
(all available invariants must be considered by the decision pro-
cedure), interferes with more optimizations (such as loop peeling)
than our approach, and makes removing dead invariants much more
difficult (because invariants never have explicit uses).

At the other end of the spectrum, there are other systems that not
only represent dependences explicitly as we do, but also record ex-
actly why the dependences imply safety for each instruction, using
proofs, instead of relying on a decision procedure during checking,
as in our system. The LTT system of Crary and Vanderwaart [10]
and the TSCB system of Shao et al. [23], developed independently,
both take this approach, albeit in the setting of a functional or
mostly-functional language. Both systems are designed around the
idea of incorporating a logic into a type theory, in order to combine
the benefits of proof-carrying code [20] with the convenience of
a type system. LTT and TSCB adopt the linear logical framework
LLF and the Calculus of Inductive Constructions, respectively, as
their proof languages. Incorporating a proof system also gives them
more flexibility, as they can express a variety of properties within a
single framework.

The lack of explicit proofs in the representation forces us to
use a decision procedure during typechecking. This limits us to
decidable properties, and may be less suited for certified code
applications where the added complexity of a decision procedure
in the verifier may be undesirable.

On the other hand, a system such as ours is much more suited
to use in the internals of an optimizing compiler. For the limited
use that we need proofs for—to verify the correctness of checks
which are eliminated by a real optimizing compiler—we can get
away with a vastly simpler system, one that imposes much less of
a burden on the compiler than more syntactically heavy systems.
Moreover, for applications of certified code, we believe that it
should be possible to take optimized intermediate code in the style
presented here and translate it, as part of code generation, to a
more explicit form in the style of LTT or TSCB, thereby reaping
the benefits of both approaches, perhaps by following the Special
J model of using a proof generating theorem prover. However, this
remains future work.

Finally, our proof variables are also similar to the Jalapeño Java
system’s condition registers as described in [6, 14]. Both are mech-
anisms to represent control-flow information as abstract value de-
pendences. Their usage, however, is more limited. Condition regis-
ters are not used to express general safety information or to support
verification of code. Instead, they are used by the compiler to model
control flow between a check operation and all (rather than just po-
tentially unsafe) instructions that follow it. Jalapeño uses condition
registers to collapse control flow due to exceptions into a single ex-
tended block and, in that block, to prevent instruction reordering
that would violate control flow dependences.

8. Conclusions
This paper has shown a typed low-level program representation
that preserves memory safety dependences in highly-optimizing

type-preserving compilers. Our representation encodes safety de-
pendences as first-class term-level proof variables that capture the
essential memory-safety dependences in the program without artifi-
cially constraining optimizations—previous approaches that piggy-
back safety dependence on top of value dependence inhibit opti-
mization opportunities. Our representation encodes proofs of mem-
ory safety as dependent types associated with proof variables. Ex-
perience implementing this representation in the STARJIT com-
piler has demonstrated that a highly-optimizing Java JIT compiler
can easily generate and maintain this representation in the pres-
ence of aggressive SSA-based optimizations such as bounds check
elimination, value numbering, strength reduction, linear function
test replacement, and others. Using explicit proof values and proof
types, modern optimizing compilers for type-safe languages can
now generate provably safe yet low-level intermediate representa-
tions without constraining optimizations.

References
[1] ADL-TABATABAI, A.-R., BHARADWAJ, J., CHEN, D.-Y., GHU-

LOUM, A., MENON, V. S., MURPHY, B. R., SERRANO, M., AND
SHPEISMAN, T. The StarJIT compiler: A dynamic compiler for man-
aged runtime environments. Intel Technology Journal 7, 1 (February
2003).

[2] AMME, W., DALTON, N., VON RONNE, J., AND FRANZ, M.
SafeTSA: a type safe and referentially secure mobile-code repre-
sentation based on static single assignment form. In Proceedings of
the ACM SIGPLAN 2001 conference on Programming language de-
sign and implementation (Snowbird, UT, USA, 2001), pp. 137–147.

[3] BILARDI, G., AND PINGALI, K. Algorithms for computing the static
single assignment form. J. ACM 50, 3 (2003), 375–425.

[4] BODÍK, R., GUPTA, R., AND SARKAR, V. ABCD: Eliminating
array bounds checks on demand. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation (Vancouver, British Columbia, Canada, 2000),
pp. 321–333.

[5] BRIGGS, P., COOPER, K. D., AND SIMPSON, L. T. Value
numbering. Software—Practice and Experience 27, 6 (June 1996),
701–724.

[6] CHAMBERS, C., PECHTCHANSKI, I., SARKAR, V., SERRANO,
M. J., AND SRINIVASAN, H. Dependence analysis for Java. In
Proceedings of the 12th International Workshop on Languages and
Compilers for Parallel Computing (1999), vol. 1863 of Lecture Notes
in Computer Science, pp. 35–52.

[7] CHEN, J., AND TARDITI, D. A simple typed intermediate language
for object-oriented languages. In Proceedings of the 32nd Annual
ACM Symposium on Principles of Programming Languages (Long
Beach, CA, USA, Jan. 2005), ACM Press, pp. 38–49.

[8] COLBY, C., LEE, P., NECULA, G. C., BLAU, F., PLESKO, M., AND
CLINE, K. A certifying compiler for Java. In PLDI ’00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming language
design and implementation (New York, NY, USA, 2000), ACM Press,
pp. 95–107.

[9] COOPER, K. D., SIMPSON, L. T., AND VICK, C. A. Operator
strength reduction. ACM Transactions on Programming Languages
and Systems (TOPLAS) 23, 5 (September 2001), 603–625.

[10] CRARY, K., AND VANDERWAART, J. An expressive, scalable type
theory for certified code. In ACM SIGPLAN International Conference
on Functional Programming (Pittsburgh, PA, 2002), pp. 191–205.

[11] CYTRON, R., FERRANTE, J., ROSEN, B., WEGMAN, M., AND
ZADECK, K. An efficient method of computing static single
assignment form. In Proceedings of the Sixteenth Annual ACM
Symposium on the Principles of Programming Languages (Austin,
TX, Jan. 1989).

[12] GLEW, N. An efficient class and object encoding. In Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages (Minneapolis, MN, USA, Oct. 2000), ACM
Press, pp. 311–324.

[13] GROSSMAN, D., AND MORRISETT, J. G. Scalable certification
for typed assembly language. In TIC ’00: Selected papers from the
Third International Workshop on Types in Compilation (London, UK,
2001), Springer-Verlag, pp. 117–146.

[14] GUPTA, M., CHOI, J.-D., AND HIND, M. Optimizing Java programs
in the presence of exceptions. In Proceedings of the 14th European
Conference on Object-Oriented Programming - ECOOP ’00 (Lecture
Notes in Computer Science, Vol. 1850) (June 2000), Springer-Verlag,
pp. 422–446.

[15] IGARASHI, A., PIERCE, B., AND WADLER, P. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Transactions on
Programming Languages and Systems (TOPLAS) 23, 3 (May 2001),
396–560. First appeared in OOPSLA, 1999.

[16] KNOOP, J., RÜTHING, O., AND STEFFEN, B. Lazy code motion.
In Proceedings of the SIGPLAN ’92 Conference on Programming
Language Design and Implementation (San Francisco, CA, June
1992).

[17] MENON, V., GLEW, N., MURPHY, B., MCCREIGHT, A., SHPEIS-
MAN, T., ADL-TABATABAI, A.-R., AND PETERSEN, L. A verifiable
SSA program representation for aggressive compiler optimization.
Tech. Rep. YALEU/DCS/TR-1338, Department of Computer Sci-
ence, Yale University, 2005.

[18] MORRISETT, G., CRARY, K., GLEW, N., GROSSMAN, D.,
SAMUELS, R., SMITH, F., WALKER, D., WEIRICH, S., AND
ZDANCEWIC, S. TALx86: A realistic typed assembly language. In
Second ACM SIGPLAN Workshop on Compiler Support for System
Software (Atlanta, Georgia, 1999), pp. 25–35. Published as INRIA
Technical Report 0288, March, 1999.

[19] MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. From
System F to typed assembly language. ACM Transactions on
Programming Languages and Systems (TOPLAS) 21, 3 (May 1999),
528—569.

[20] NECULA, G. Proof-carrying code. In POPL1997 (New York, New
York, January 1997), ACM Press, pp. 106–119.

[21] NECULA, G. C., AND LEE, P. The design and implementation
of a certifying compiler. In PLDI ’98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementation (New York, NY, USA, 1998), ACM Press, pp. 333–
344.

[22] PUGH, W. The Omega test: A fast and practical integer programming
algorithm for dependence analysis. In Proceedings of Supercomput-
ing ’91 (Albuquerque, NM, Nov. 1991).

[23] SHAO, Z., SAHA, B., TRIFONOV, V., AND PAPASPYROU, N. A
type system for certified binaries. In Proceedings of the 29th Annual
ACM Symposium on Principles of Programming Languages (January
2002), ACM Press, pp. 216–232.

[24] VANDERWAART, J. C., DREYER, D. R., PETERSEN, L., CRARY,
K., AND HARPER, R. Typed compilation of recursive datatypes.
In Proceedings of the TLDI 2003: ACM SIGPLAN International
Workshop on Types in Language Design and Implementation (New
Orleans, LA, January 2003), pp. 98–108.

[25] VON RONNE, J., FRANZ, M., DALTON, N., AND AMME, W.
Compile time elimination of null- and bounds-checks. In 3rd
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-
3) (December 2000).

[26] WALKER, D., CRARY, K., AND MORISETT, G. Typed memory man-
agement via static capabilities. ACM Transactions on Programming
Languages and Systems (TOPLAS) 22, 4 (July 2000), 701–771.

[27] XI, H., AND HARPER, R. Dependently typed assembly language.
In International Conference on Functional Programming (September
2001), pp. 169–180.

