
A Verifiable SSA Program Representation for Aggressive
Compiler Optimization

Vijay S. Menon1 Neal Glew1 Brian R. Murphy2 Andrew McCreight3 ∗ Tatiana Shpeisman1

Ali-Reza Adl-Tabatabai1 Leaf Petersen1
1Intel Labs 2Intel China Research Center 3Dept. of Computer Science, Yale University

Santa Clara, CA 95054 Beijing, China New Haven, CT 06520
{vijay.s.menon, brian.r.murphy, tatiana.shpeisman, ali-reza.adl-tabatabai, leaf.petersen}@intel.com aglew@acm.org

andrew.mccreight@yale.edu

Abstract
We present a verifiable low-level program representation to em-
bed, propagate, and preserve safety information in high perfor-
mance compilers for safe languages such as Java and C#. Our rep-
resentation precisely encodes safety information via static single-
assignment (SSA) [11, 3] proof variables that are first-class con-
structs in the program.

We argue that our representation allows a compiler to both (1)
express aggressively optimized machine-independent code and
(2) leverage existing compiler infrastructure to preserve safety
information during optimization. We demonstrate that this ap-
proach supports standard compiler optimizations, requires minimal
changes to the implementation of those optimizations, and does not
artificially impede those optimizations to preserve safety.

We also describe a simple type system that formalizes type
safety in an SSA-style control-flow graph program representation.
Through the types of proof variables, our system enables composi-
tional verification of memory safety in optimized code.

Finally, we discuss experiences integrating this representation
into the machine-independent global optimizer of STARJIT, a
high-performance just-in-time compiler that performs aggressive
control-flow, data-flow, and algebraic optimizations and is compet-
itive with top production systems.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.4 [Programming
Languages]: Compilers; D.3.4 [Programming Languages]: Opti-
mization; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Performance, Design, Languages, Reliability,
Theory, Verification

Keywords Typed Intermediate Languages, Proof Variables, Safety
Dependences, Check Elimination, SSA Formalization, Type Sys-
tems, Typeability Preservation, Intermediate Representations

∗Supported in part by NSF grants CCR-0208618 and CCR-0524545.

[copyright notice will appear here]

1. Introduction
In the past decade, safe languages have become prevalent in the
general software community and have gained wide acceptance
among software developers. Safe languages such as Java and C# are
particularly prominent. These languages provide a C++-like syn-
tax and feature set in conjunction with verifiable safety properties.
Foremost among these properties is memory safety, the guarantee
that a program will only read or write valid memory locations.
Memory safety is crucial to both robustness and security. It pre-
vents common programmer memory errors and security exploits
such as buffer overruns through a combination of compile-time
and run-time checks.

Both Java and C# were designed to allow programs to be com-
piled and distributed via bytecode formats. These formats retain the
crucial safety properties of the source language and are themselves
statically verifiable. Managed runtime environments (MRTEs),
such as the Java Virtual Machine (JVM) or the Common Lan-
guage Infrastructure (CLI), use static verification to ensure that no
memory errors have been introduced inadvertently or maliciously
before executing bytecode programs.

Bytecodes, however, are still rather high-level compared to na-
tive machine code. Runtime checks (e.g., array bounds checks)
are built into otherwise potentially unsafe operations (e.g., mem-
ory loads) to ease the verification process. To obtain acceptable
performance, MRTEs compile programs using a just-in-time (JIT)
compiler. A JIT compiler performs several control- and data-flow
compiler transformations and produces optimized native machine
code. In the process, runtime checks are often eliminated or sepa-
rated from the potentially unsafe operations that they protect. As far
as we are aware, all production Java and CLI JIT compilers remove
safety information during the optimization process: optimized low
level code or generated machine code is not easily verifiable. From
a security perspective, this precludes the use of optimized low level
code as a persistent and distributable format. Moreover, from a reli-
ability perspective it requires that the user trust that complex com-
piler transformations do not introduce memory errors.

In recent years, researchers have developed proof languages
(e.g., PCC [19] and TAL [18]) that allow a compiler to embed
safety proofs into low-level code, along with verification tech-
niques to validate those proofs. They have demonstrated certifying
compilers that can compile Java and safe C-like languages [20, 8,
17, 13] while both performing optimizations and generating safety
proofs. Nevertheless, although the proof language and verification
process is well-developed, implementing or modifying existing op-
timizations to correctly generate and/or preserve safety information
is still an arduous and poorly understood process.

POPL ’06 Submission 1 2005/11/15

In this paper, we introduce a new program representation frame-
work for safe, imperative, object-oriented languages to aid in the
generation, propagation, and verification of safety information
through aggressive compiler optimization. In this representation
we encodesafety dependences, the dependences between poten-
tially unsafe operations and the control points that guarantee their
safety, as abstract proof variables. These proof variables are purely
static: they have no runtime semantics. Nevertheless, they are first
class constructs produced by control points and consumed by po-
tentially unsafe instructions. From the perspective of most compiler
transformations, they are the same as any other variable.

We argue that this representation is particularly well-suited to
use as an intermediate representation for an aggressively optimiz-
ing compiler. We demonstrate that it supports common advanced
compiler optimizations without artificially constraining or exten-
sively modifying them. In particular, we demonstrate that by carry-
ing proof values in normal variables a compiler can leverage exist-
ing transformations such as SSA construction, copy propagation,
and dead code elimination to place, update and eliminate proof
variables.

We illustrate our ideas in the context of the machine-independent
global optimizer of STARJIT [1], a dynamic optimizing compiler
for Java and C#. STARJIT was designed as a high-performance op-
timizing compiler and is competitive in performance with the best
production MRTE systems. We describe a prototype integration of
our ideas into STARJIT’s internal representation, and we discuss
how it is able to preserve safety information through a varied set
of aggressive optimizations. The original motivation for the safety
dependence representation described in this paper was for opti-
mization rather than safety. However, a prototype implementation
of a verifier has also been developed, and this paper is intended
to provide both a description of the safety dependence mechanism
and a theoretical development of a type system based upon it.

In particular, our paper makes the following contributions:

1. We introduce a safe low-level imperative program representa-
tion that combines static single-assignment (SSA) form with
explicit safety dependences, and we illustrate how it can be used
to represent highly optimized code.

2. We present a simple type system to verify memory safety of
programs in this representation. To the best of our knowledge,
this type system is the first to formalize type checking in an
SSA representation. While SSA is in some sense equivalent to
CPS, the details are sufficiently different that our type system is
quite unlike the usual lambda-calculus style type systems and
required new proof techniques.

3. We demonstrate the utility of this program representation in a
high-performance compiler, and we describe how a compiler
can leverage its existing framework to preserve safety informa-
tion. In particular, we demonstrate that only optimizations that
directly affect memory safety, such as bounds check elimination
and strength reduction of address calculations, require signifi-
cant modification.

The remainder of the paper is organized as follows. In Section 2,
we motivate the explicit representation of safety dependence in an
optimizing compiler and describe how to do this via proof variables
in a low-level imperative program representation. In Section 3, we
describe a formal core language specifically dealing with array-
bounds checks and present a type system with which we can verify
programs in SSA form. In Section 4, we demonstrate how a com-
piler would lower a Java program to the core language and illustrate
how aggressive compiler optimizations produce efficient and veri-
fiable code. In Section 5, we informally describe extensions to our
core language to capture complete Java functionality. In Section 6,

if (a!=null)
while (!done) {

b = (B)a;
· · · = · · · b.x · · ·
· · ·

}

Figure 1. Field load in loop

we discuss the status of our current implementation, and, finally, in
Sections 7 and 8 we discuss related work and conclude.

2. Motivation
We define apotentially unsafe instructionas any instruction that,
taken out of context, might fault or otherwise cause an illegal
memory access at runtime. Some instructions, taken independently,
are inherently unsafe. A load instruction may immediately fault if
it accesses protected memory or may trigger an eventual crash by
reading an incorrectly typed value. A store may corrupt memory
with an illegal value (e.g., if an arbitrary integer replaces an object’s
virtual table).

Consider, for example, the field access in Figure 1. Assuming
C++-like semantics, the operationb.x dereferences memory with
no guarantee of safety. In general, C++ does not guarantee thatb
refers to a real object of typeB: b may hold an an integer that
faults when used as a pointer.

Assuming Java semantics, however, the field access itself
checks at runtime thatb does not point to a null location. If the
check succeeds, the field access executes the load; otherwise, it
throws an exception, bypassing the load. By itself, this built-in
check does not ensure safety: the load also depends on the preced-
ing cast, which dynamically checks that the runtime type ofb is
in fact compatible with the typeB. If the check succeeds, the cast
executes the load; otherwise, it throws an exception, bypassing the
load.

Typically, the safety of a potentially unsafe instruction depends
on a set of control flow points. We refer to this form of dependence
assafety dependence. In this example, the safety of the load de-
pends on the cast that establishes its type. We call an instruction
contextually safewhen its corresponding safety dependences guar-
antee its safety. To verify the output of a compiler optimization, we
must prove that each instruction is contextually safe.

2.1 Safety In Java

In Java and the verifiable subset of CLI, a combination of static ver-
ification and runtime checks guarantee the contextual safety of indi-
vidual bytecode instructions. Static type checking establishes that
variables have the appropriate primitive or object type. Runtime
checks such as type tests (for narrowing operations), null pointer
tests, and array bounds tests detect conditions that would cause a
fault or illegal access and throw a language-level runtime excep-
tion instead.

Figure 2 shows Java-like bytecode instructions (using pseudo-
registers in place of stack locations for clarity) for the code of
Figure 1. The Java type system guarantees that variableb has type
B at compile time, while thegetfield instruction guarantees non-
null access by testing for null at runtime. The check and the static
verifier together guarantee that the load operation will not trigger
an illegal memory access.

2.2 Safety in a Low-Level Representation

The Java bytecode format was not intended to be an intermedi-
ate program representation for an optimizing compiler. There are
a number of reasons why such a format is not suitable, but here we

POPL ’06 Submission 2 2005/11/15

ifnull a goto EXIT
L :

ifeq donegoto EXIT
b := checkcast(a, B)
t1 := getfield(b, B::x)
· · ·
goto L

EXIT :

Figure 2. Field load with Java-like bytecode

if a = null goto EXIT
L :

if done= 0 goto EXIT
checkcast(a, B)
checknull(a)
t2 := getfieldaddr(a, B::x)
t1 := ld(t2)
· · ·
goto L

EXIT :

Figure 3. Field load lowered in erasure-style representation

will focus only on those related to safety. First, bytecodes hide re-
dundant check elimination opportunities. For example, in Figure 2,
optimizations can eliminate the null check built into thegetfield
instruction because of theifnull instruction. Even though sev-
eral operations have built-in exception checks, programmers usu-
ally write their code to ensure that these checks never fail, so such
optimization opportunities are common in Java programs.

Second, extraneous aliasing introduced to encode safety prop-
erties hides optimization opportunities. In Figures 1 and 2, vari-
able b represents a copy ofa that has the typeB. Any use ofa
that requires this type information must useb instead. While this
helps static verification, it hinders optimization. The field access
must establish thatb is not null, even though theifnull statement
establishes that property ona. To eliminate the extra check, a re-
dundancy elimination optimization must reason about aliasing due
to cast operations; this is beyond the capabilities of standard algo-
rithms [16, 5].

In the absence of a mechanism for tracking safety dependences,
STARJIT would lower a code fragment like this to one like that
in Figure 3. Note that theld operation is potentially unsafe and is
safety dependent on the null check. In this case, however, the safety
dependence between the null check and the load is not explicit. Al-
though the instructions are still (nearly) adjacent in this code, there
is no guarantee that future optimizations will leave them so. Fig-
ure 4 roughly illustrates the code that STARJIT would produce for
our example. Redundant checks are removed by a combination of
partial loop peeling (to expose redundant control flow) and com-
mon subexpression elimination. The invariant address field calcu-
lation is hoisted via code motion. In this case, the dependence of the
load on the operations that guarantee its safety (specifically, theif
andcheckcast statements) has become obscured. We refer to this
as anerasure-stylelow-level representation, as safety information
is effectively erased from the program.

An alternative representation embeds safety information di-
rectly into the values and their corresponding types. The Java lan-
guage already does this for type refinement via cast operations.
This approach also applies to null checks, as shown in Figure 5. The
SafeTSA representation takes this approach, extending it to array
bounds checks [24, 2] as well. We refer to this as arefinement-style
representation. In this representation, value dependences preserve
the safety dependence between a check and a load. To preserve

t2 := getfieldaddr(a, B::x)
if a = null goto EXIT
if done= 0 goto EXIT
checkcast(a, B)

L :
t1 := ld(t2)
· · ·
if done 6= 0 goto L

EXIT :

Figure 4. Field load optimized in erasure-style representation

if a = null goto EXIT
L :

if done = 0 goto EXIT
b := checkcast(a, B)
t3 := checknull(b)
t2 := getfieldaddr(t3, B::x)
t1 := ld(t2)
· · ·
goto L

EXIT :

Figure 5. Field load lowered in refinement-style representation

safety, optimizations must preserve the value flow between the
check and the load. Check elimination operations (such as the
checknull in Figure 5) may be eliminated by optimization, but
the values they produce (e.g.,t2) must be redefined in the process.

From an optimization standpoint, a refinement-style represen-
tation is not ideal. The safety dependence between the check and
the load is not direct. Instead, it is threaded through the address
field calculation, which is really just an addition operation. While
the load itself cannot be performed until the null test, the address
calculation is always safe. A code motion or instruction scheduling
compiler optimization should be free to move it above the check if
it is deemed beneficial. In Figure 3, it is clearly legal. In Figure 5,
it is no longer possible. The refinement-style representation adds
artificial constraints to the program to allow safety to be checked.
In this case, the address calculation is artificially dependent on the
check operation.

A refinement-style representation also obscures optimization
opportunities by introducing multiple names for the same value.
Optimizations that depend on syntactic equivalence of expressions
(such as the typical implementation of redundancy elimination) be-
come less effective. In Figure 3,a is syntactically compared to
null twice. In Figure 5, this is no longer true. In general, syntac-
tically equivalent operations in an erasure-style representation may
no longer be syntactically equivalent in a refinement-style repre-
sentation.

2.3 A Proof Passing Representation

Neither the erasure-style nor refinement-style representations pre-
cisely represent safety dependences. The erasure-style representa-
tion omits them altogether, while the refinement-style representa-
tion encodes them indirectly. As a result, the erasure-style rep-
resentation is easy to optimize but difficult to verify, while the
refinement-style is difficult to optimize but easy to verify.

To bridge this gap, we propose the use of aproof passing
representation that encodes safety dependence directly into the
program representation through proof variables. Proof variables act
as capabilities for unsafe operations (similar to the capabilities of
Walker et al. [25]). The availability of a proof variable represents
the availability of a proof that a safety property holds. A potentially
unsafe instruction must use an available proof variable to ensure

POPL ’06 Submission 3 2005/11/15

[s1, s2] if a = null goto EXIT
L :

if done= 0 goto EXIT
s3 := checkcast(a, B)
s4 := checknull(a)
t2 := getfieldaddr(a, B::x)
s5 := pfand(s3, s4)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 6. Field load lowered in a proof passing representation

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

L :
if done= 0 goto EXIT
s3 := checkcast(a, B)
s4 := s1

s5 := pfand(s3, s4)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 7. Field load with CSE and Code Motion

contextual safety. This methodology relates closely to mechanisms
proposed for certified code by Crary and Vanderwaart [10] and
Shao et al. [22] in the context of the lambda calculus. We discuss
the relationship of our approach to this work in Section 7.

Proof variables do not consume any physical resources at run-
time: they represent abstract values and only encode safety de-
pendences. Nevertheless, they are first-class constructs in our rep-
resentation. They are generated by interesting control points and
other relevant program points, and consumed by potentially unsafe
instructions as operands guaranteeing safety. Most optimizations
treat proof variables like other program variables.

Figure 6 demonstrates how we represent a load operation in a
proof passing representation. As in Figure 5, we represent safety
through value dependences, but instead of interfering with existing
values, we insert new proof variables that directly model the safety
dependence between the load and both check operations.

Figures 7 to 10 represent the relevant transformations performed
by STARJIT to optimize this code. In Figure 7, we illustrate two op-
timizations. First, STARJIT’s common subexpression elimination
pass eliminates the redundantchecknull operation. When STAR-
JIT detects a redundant expression in the right hand side of an in-
struction, it replaces that expression with the previously defined
variable. Theif statement defines the proof variables1 if the test
fails. This variable proves the propositiona 6= null. At the defi-
nition of s4, the compiler detects thata 6= null is available, and
redefiness4 to be a copy ofs1. STARJIT updates a redundant proof
variable the same way as any other redundant variable.

Second, STARJIT hoists the definition oft2, a loop invariant
address calculation, above the loop. Even though the computed ad-
dress may be invalid at this point, the address calculation is always
safe; we require a proof of safety only on a memory operation that
dereferences the address.

Figure 8 shows a step of copy propagation, which propagatess1

into the load instruction and eliminates the use ofs4, allowing dead
code elimination to remove the definition ofs4.

Figure 9 illustrates the use of partial loop peeling to expose re-
dundant control flow operations within the loop. This transforma-

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT

L :
if done= 0 goto EXIT
s3 := checkcast(a, B)
s5 := pfand(s3, s1)
t1 := ld(t2) [s5]
· · ·
goto L

EXIT :

Figure 8. Field load with Copy Propagation

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT
if done= 0 goto EXIT
s1
3 := checkcast(a, B)

L :
s2
3 := φ(s1

3, s3
3)

s5 := pfand(s2
3, s1)

t1 := ld(t2) [s5]
· · ·
if done= 0 goto EXIT
s3
3 := checkcast(a, B)
goto L

EXIT :

Figure 9. Field load with Partial Loop Peeling

t2 := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT
if done= 0 goto EXIT
s3 := checkcast(a, B)
s5 := pfand(s3, s1)

L :
t1 := ld(t2) [s5]
· · ·
if done 6= 0 goto L

EXIT :

Figure 10. Field load with 2nd CSE and Branch Reversal

tion duplicates the test ondone and the checkcast operation, and
makes the load instruction the new loop header. The proof variable
s3 is now defined twice, where each definition establishes thata
has typeB on its corresponding path. The compiler leverages SSA
form to establish that the proof variable is available within the loop.

Finally, in Figure 10, another pass of common subexpression
elimination eliminates the redundantcheckcast. Copy propaga-
tion propagates the correct proof variable, this time through a re-
dundant phi instruction. Note, that this final code is equivalent to
the erasure-style representation in Figure 4 except that proof vari-
ables provide a direct representation of safety. In Figure 10, it is
readily apparent that theif andcheckcast statements establish
the safety of the load instruction.

In the next section we formalize our approach as a small core
language, and the following sections show its use and preservation
across compiler optimizations and extension to full Java.

3. Core Language
In this section we describe a small language that captures the main
ideas of explicit safety dependences through proof variables. As
usual with core languages, we wish to capture just the essence of
the problem and no more. The issue at hand is safety dependences,
and to keep things simple we will consider just one such depen-

POPL ’06 Submission 4 2005/11/15

(P, L1, n1, b.i) 7→ (P, L2, n2, pc) where:

P (b.i) L2 n2 pc Side conditions
p L1{x1 := L1(x2)} n1 b.(i + 1) p[n1] = x1 := x2

x : τ := i L1{x := i} n1 b.(i + 1)
x1 : τ := x2 L1{x1 := L1(x2)} n1 b.(i + 1)
x1 : τ := newarray(x2, x3) L1{x1 := v1} n1 b.(i + 1) L1(x2) = n, L1(x3) = v3, v1 = 〈v3, . . . , v3| {z }

n

〉

x1 : τ := newarray(x2, x3) L1{x1 := v1} n1 b.(i + 1) L1(x2) = i, i < 0, v1 = 〈〉
x1 : τ := len(x2) L1{x1 := n} n1 b.(i + 1) L1(x2) = 〈v0, . . . , vn−1〉
x1 : τ := base(x2) L1{x2 := v@0} n1 b.(i + 1) L1(x2) = v, v = 〈v′〉
x1 : τ := x2 bopx3 L1{x1 := i4} n1 b.(i + 1) L1(x2) = i2, L1(x3) = i3, i4 = i2 bop i3
x1 : τ := x2 bopx3 L1{x1 := v@i4} n1 b.(i + 1) L1(x2) = v@i2, L1(x3) = i3, i4 = i2 bop i3
x1 : τ := ld(x2) [x3] L1{x1 := vi} n1 b.(i + 1) L1(x2) = 〈v0, . . . , vn〉@i, 0 ≤ i ≤ n
x1 : τ := pffact(x2) L1{x1 := true} n1 b.(i + 1)
x : τ := pfand(y) L1{x := true} n1 b.(i + 1)
[x1 : τ1, x2 : τ2] if x3 rop x4 goto b′ L1{x1 := true} edgeP (b, b + 1) (b + 1).0 L1(x3) = i3, L1(x4) = i4,¬(i3 rop i4)
[x1 : τ1, x2 : τ2] if x3 rop x4 goto b′ L1{x2 := true} edgeP (b, b′) b′.0 L1(x3) = i3, L1(x4) = i4, i3 rop i4
goto b′ L1 edgeP (b, b′) b′.0

Figure 11. Operational semantics

dence, namely, bounds checking for arrays. In particular, we con-
sider a compiler with separate address arithmetic, load, and store
operations, where the type system must ensure that a load or store
operation is applied only to valid pointers. Moreover, since the ba-
sic safety criteron for a store is the same as for a load, namely, that
the pointer is valid, we consider only loads; adding stores to our
core language adds no interesting complications. Not considering
stores further allows us to avoid modelling the heap explicitly, but
to instead use a substitution semantics which greatly simplifies the
presentation.

The syntax of our core language is given as follows:

Prog. States S ::= (P, L, n, pc)
Programs P ::= B
Blocks B ::= p; ι; c
Phi Instructions p ::= x : τ := φ(x)
Instructions ι ::= x : τ := r
Right-hand sides r ::= i | x | newarray(x1, x2) |

len(x) | base(x) |
x1 bopx2 | ld(x1) [x2] |
pffact(x) | pfand(x)

Binary Ops bop ::= + | −
Transfers c ::= goto n | halt |

[x1 : τ1, x2 : τ2] if x3 rop x4

goto n
Relations rop ::= <|≤|=|6=
Environments L ::= x := v
Values v ::= i | 〈v〉 | 〈v〉@i | true
Prog. Counters pc ::= n1.n2

Here i ranges over integer constants,x ranges over variables,n
ranges over natural numbers, andφ is the phi-operation of SSA.
We use the bar notation introduced in Featherweight Java [15]:B
abbreviatesB0, . . . , Bn, x := v abbreviatesx0 := v0, . . . , xn :=
vn, et cetera. We also use the bar notation in type rules to ab-
breviate a sequence of typing judgements in the obvious way.
In addition to the grammar above, programs are subject to a
number of context-sensitive restrictions. In particular, then in
[x1 : τ1, x2 : τ2] if x3 rop x4 goto n and goto n must be a
block number in the program (i.e., if the program isB0, . . . , Bm

then0 ≤ n ≤ m); the transfer in the last block must be a goto
or halt; the number of variables in a phi instruction must equal the
number of incoming edges (as defined below) to the block in which
it appears; the variables assigned in the phi instructions of a block
must be distinct.

Informally, the key features of our language are the following.
The operationbase(x) takes an array and creates a pointer to the
element at index zero. The arithmetic operations can be applied to
such pointers and an integer to compute a pointer to a different in-
dex. Theld(x1) [x2] operation loads the value pointed to by the
pointer inx1. The variablex2 is a proof variable and conceptually
contains a proof thatx1 is a valid pointer: that is, that it points to an
in-bounds index. The typing rules ensure thatx1 is valid by requir-
ing x2 to contain an appropriate proof. The operationspffact(x)
andpfand(x) construct proofs. Forpffact(x) a proof of a for-
mula based on the definition ofx is constructed. For example, if
x’s definition isx : int := len(y) thenpffact(x) constructs a
proof of x = len(y). A complete definition of the defining facts
of instructions appears in Figure 14. Forpfand(x1, . . . , xn), x1

throughxn are also proof variables, and a proof of the conjunction
is returned. Values of the form〈v0, . . . , vn〉@i represent pointers
to array elements: in this case a pointer to the element at indexi
of an array of type〈v0, . . . , vn〉. Such a pointer is valid ifi is in
bounds (that is, if0 ≤ i ≤ n) and invalid otherwise. The typing
rules must ensure that only valid pointers are loaded from, with
proof variables used to provide evidence of validity. The final un-
usual aspect of the language is that branches assign proofs to proof
variables that reflect the condition being branched on. For exam-
ple, in the branch[x1 : τ1, x2 : τ2] if x3=x4 goto n, a proof of
x3 6= x4 is assigned tox1 along the fall-through edge, and a proof
of x3 = x4 is assigned tox2 along the taken edge. These proofs
can then be used to discharge validity requirements for pointers.

To state the operational semantics and type system we need a
few definitions. The program counters of a programpcs(P) are
{b.i | P = B0, . . . , Bm ∧ b ≤ m ∧ Bb = p; ι1; · · · ; ιn; c ∧ i ≤
n+1}. We writeP (b) for Bb whenP = B0, . . . , Bn andb ≤ n; if
P (b) = p; ι1; . . . ; ιm; c thenP (b.n) isp whenn = 0, andιn when
1 ≤ n ≤ m andc whenn = m + 1. The edges of a programP ,
edges(P), are as follows. The entry edge is(−1, 0). If P (n) ends
in [x1 : τ1, x2 : τ2] if x3 rop x4 goto n′ then there are edges
(n, n+1), called the fall-through edge, and(n, n′), called the taken
edge. IfP (n) ends ingoto n′ then there is an edge(n, n′). For a
givenP andn2 the edges(n1, n2) ∈ edges(P) are numbered from
zero in the order given byn1; edgeP (n1, n2) is this number, also
called the incoming edge number of(n1, n2) into n2.

Operational Semantics A program P is started in the state
(P, ∅, 0, 0.0). The reduction relation that maps one state to the
next is given in Figure 11. Note that the third component of a pro-

POPL ’06 Submission 5 2005/11/15

gram state tracks which incoming edge led to the current program
counter—initially this is the entry edge(−1, 0), and is updated by
transfers. It is used by phi instructions to select the correct variable.
The notationp[i] denotesx1 := x1i, . . . , xn := xni whenp =
x1 : τ1 := φ(x11, . . . , x1m), . . . , xn : τn := φ(xn1, . . . , xnm).
A program terminates when in a state of the form(P, L, n, pc)
whereP (pc) = halt. A program state is stuck if it is irreducible
and not a terminal state. Stuck states all represent type errors that
the type system should prevent. Note that the array creation opera-
tion must handle negative sizes. Our implementation would throw
an exception, but since the core language does not have exceptions,
it simply creates a zero length array if a negative size is requested.

In the operational semantics, the proof type has the single in-
habitanttrue, upon which no interesting operations are defined.
Proofs in this sense are equivalent to unit values for which non-
escaping occurrences can be trivially erased when moving to an
untyped setting. This “proof erasure” property is precisely analo-
gous to the “coercion erasure” property of the coercion language of
Vanderwaart et al. [23]. In practice, uses of proof variables in the
STARJIT compiler are restricted such that all proof terms can be
elided during code generation and consequently impose no over-
head at run time. While we believe that it would be straightforward
to formalize the syntactic restrictions that make this possible, we
choose for the sake of simplicity to leave this informal here.

Type System The type system has two components: the SSA
property and a set of typing judgements. The SSA property ensures
both that every variable is assigned to at most once in the program
text (the single assignment property) and that all uses of variables
are dominated by definitions of those variables. In a conventional
type system, these properties are enforced by the typing rules. In
particular, the variables that are listed in the context of the typing
judgement are the ones that are in scope. For SSA IRs, it is more
convenient to check these properties separately.

The type checker must ensure that during execution each use of
a variable is preceded by an assignment to that variable. Since thei-
th variable of a phi instruction is used only if thei-th incoming edge
was used to get to the block, and the proof variables in an if transfer
are assigned only on particular out-going edges, we give a rather
technical definition of points at which variables are assigned or
used. These points are such that a definition point dominating a use
point implies that assignment will always precede use. These points
are based on an unconventional notion of control-flow graph, to
avoid critical edges which might complicate our presentation. For
a programP with blocks0 to m, the control-flow graph consists
of the nodes{0, . . . , m} ∪ edges(P) and edges from each original
noden to each original edge(n, n′) and similarly from(n, n′)
to n′. The definition/use points,du(P), are pcs(P) ∪ {b.0.i |
P (b.0) = p0, . . . , pn ∧ 0 ≤ i ≤ n} ∪ {e.i | e ∈ edges(P) ∧ i ∈
{0, 1}}.

Figure 13 gives the formal definition of dominance, defini-
tion/use points, and the SSA property.

The syntax of types is:

Types τ ::= int | array(τ) | ptr?〈τ〉 | S(x) | pf(F)

Facts F ::= e1 rop e2 | F1 ∧ F2

Fact Exps. e ::= i | x | len(x) | e1 bope2 | x@e
EnvironmentsΓ ::= x : τ

The typeptr?〈τ〉 is given to pointers that, if valid, point to values
with type τ (the ? indicates that they might not be valid). The
singleton typeS(x) is given to things that are equal tox. The
type pf(F) is given to proof variables that contain a proof of the
factF . Facts include arithmetic comparisons and conjunction. Fact
expressions include integers, variables, array lengths, arithmetic
operations, and a subscript expression—the fact expressionx@e
stands for a pointer that points to the element at indexe of arrayx.

Judgement Meaning
Γ ` τ1 ≤ τ2 τ1 is a subtype ofτ2 in Γ
` F1 =⇒ F2 F1 impliesF2

Γ ` p p is safe in environmentΓ
Γ `P ι ι is safe in environmentΓ
Γ ` c c is safe in environmentΓ
`P τ at du τ well-formed type atdu in P
`P Γ environmentΓ well-formed inP
` P P is safe

Figure 12. Typing judgements

The judgements of the type system are given in figure 12. Most
of the typing rules are given in Figure 14. Typing environments
Γ state the types that variables are supposed to have. The rules
check that when assignments are made to a variable, the type of the
assigned value is compatible with the variable’s type. For example,
the judgementΓ ` int ≤ Γ(x) in the rule forx : τ := i checks
that integers are compatible with the type ofx. The rules also check
that uses of a variable have a type compatible with the operation.
For example, the rule for load expects a proof that the pointer,x2,
is valid, so the rule checks thatx3’s type Γ(x3) is a subtype of
pf(x@0≤x2∧x2<x@len(x)) for somex. It is this check along with the
rules for proof value generation and the SSA property that ensure
thatx2 is valid.

Given these remarks, the only other complicated rule is for phi
instructions. In a loop a phi instruction might be used to combine
two indices, and the compiler might use another phi instruction to
combine the proofs that these indices are in bounds. For example,
consider this sequence:

x1 : int := φ(x2, x3)
y1 : pf(0≤x1) := φ(y2, y3)

wherey2 : pf(0≤x2) andy3 : pf(0≤x3). Here the types fory1,
y2, andy3 are different and in some sense incompatible, but are
intuitively the correct types. The rule for phi instructions allows
this typing. In checking thaty2 has a compatible type, the rule
substitutesx2 for x1 in y1’s type to getpf(0≤x2), which is the type
thaty2 has; similarly fory3.

For a programP that satisfies the SSA property, every variable
mentioned in the program has a unique definition point, and that
definition point is decorated with a type. Letvt(P) denote the
environment formed from extracting these variable/type pairs. A
programP is well formed(` P) if:

1. P satisfies the SSA property,
2. `P vt(P),
3. vt(P) ` p for everyp in P ,
4. vt(P) `P ι for every instructionι in P , and
5. vt(P) ` c for every transferc in P .

The type system is safe:

THEOREM 1 (Type Safety).
If ` P and(P, ∅, 0, 0.0) 7→∗ S thenS is not stuck.

A proof of this theorem is given in appendix A. The proof takes
the standard high-level form of showing preservation and progress
lemmas, as well as some lemmas particular to an SSA language.
It is important to note that safety of the type system is contingent
on the soundness of the decision procedure for` F1 =⇒ F2.
In the proof, a judgement corresponding to truth of facts in an
environment is given. In this setting, the assumption of logical
soundness corresponds to the restriction that in any environment
in whichF1 is true,F2 is also true.

POPL ’06 Submission 6 2005/11/15

Defs and Uses:
If P (b.i) = x : τ := r then program counterb.i definesx, furthermore,b.i is a use of theys wherer has the following forms:

y | newarray(y1, y2) | len(y) | base(y) | y1 bopy2 | ld(y1) [y2] | pffact(y) | pfand(y)

If P (b.i) = (p0, . . . , pn) andpj = xj : τj := φ(yj1, . . . , yjm) thenb.i.j defines eachxj andek.1 uses eachyjk whereek is thek-th incoming edge
of b. If P (b.i) = [x1 : τ1, x2 : τ2] if y1 rop y2 goto n thene1.0 definesx1 ande2.0 definesx2 wheree1 ande2 are the fall-through and taken edges
respectively, andb.i usesy1 andy2. If x has a unique definition/use point inP that defines it, thendefP (x) is this point.

Dominance:

• In programP , noden dominates nodem, writtendomP (n, m), if every path in the control-flow graph ofP from (−1, 0) to m includesn.
• In programP , definition/use pointn1.i1 strictly dominates definition/use pointn2.i2, writtensdomP (n1.i1, n2.i2) if n1 = n2 andi1 < i2 (herei1 or

i2 might be a dotted pair0.j, so we take this inequality to be lexicographical ordering) orn1 6= n2 anddomP (n1, n2).

Single Assignment:
A program satisfies thesingle-assignment propertyif every variable is defined by at most one definition/use point in that program.

In Scope:
A programP satisfies thein-scope propertyif for every definition/use pointdu1 that uses a variable there is a definition/use pointdu2 that defines that
variable andsdomP (du2, du1).

SSA:
A program satisfies theSingle Static Assignment (SSA) propertyif it satisfies the single-assignment and in-scope properties. Note that a program that satisfies
SSA has a unique definition for each variable mentioned in the program.

Figure 13. SSA definitions

`P τ at du `P Γ

fv(τ) ⊆ inscopeP (du)

`P τ at du

`P τ at defP (x)

`P x : τ

Γ ` τ1 ≤ τ2 ` F1 =⇒ F2

Γ ` int ≤ int

Γ ` τ1 ≤ τ2

Γ ` array(τ1) ≤ array(τ2)

Γ ` τ1 ≤ τ2

Γ ` ptr?〈τ1〉 ≤ ptr?〈τ2〉

Γ ` S(x) ≤ S(x) Γ ` S(x) ≤ Γ(x)

` F1 =⇒ F2

Γ ` pf(F1) ≤ pf(F2)

Γ ` τ1 ≤ τ2 Γ ` τ2 ≤ τ3

Γ ` τ1 ≤ τ3

The judgement̀ F1 =⇒ F2 is some appropriate decision procedure for our fact language.

Γ ` p Γ `P ι Γ ` c

Γ ` S(xij) ≤ Γ(xi){x1, . . . , xn := x1j , . . . , xnj}
Γ ` x1 : τ1 := φ(x11, . . . , x1m), . . . , xn : τn := φ(xn1, . . . , xnm)

Γ ` int ≤ Γ(x)

Γ `P x : τ := i

Γ ` S(x2) ≤ Γ(x1)

Γ `P x1 : τ := x2

Γ ` Γ(x2) ≤ int Γ ` array(Γ(x3)) ≤ Γ(x1)

Γ `P x1 : τ := newarray(x2, x3)

Γ ` Γ(x2) ≤ array(τ2) Γ ` int ≤ Γ(x1)

Γ `P x1 : τ := len(x2)

Γ ` Γ(x2) ≤ array(τ2) Γ ` ptr?〈τ2〉 ≤ Γ(x1)

Γ `P x1 : τ := base(x2)

Γ ` Γ(x2) ≤ int Γ ` Γ(x3) ≤ int Γ ` int ≤ Γ(x1)

Γ `P x1 : τ := x2 bopx3

Γ ` Γ(x2) ≤ ptr?〈τ2〉 Γ ` Γ(x3) ≤ int Γ ` ptr?〈τ2〉 ≤ Γ(x1)

Γ `P x1 : τ := x2 bopx3

Γ ` Γ(x2) ≤ ptr?〈τ2〉 Γ ` Γ(x3) ≤ pf(x@0≤x2∧x2<x@len(x)) Γ ` τ2 ≤ Γ(x1)

Γ `P x1 : τ := ld(x2) [x3]

Γ ` pf(deffactP (x2)) ≤ Γ(x1)

Γ `P x1 : τ := pffact(x2)

Γ ` Γ(y1) ≤ pf(F1) · · · Γ ` Γ(yn) ≤ pf(Fn) Γ ` pf(F1∧···∧Fn) ≤ Γ(x1)

Γ `P x : τ := pfand(y1, . . . , yn)

Γ ` Γ(x3) ≤ int Γ ` Γ(x4) ≤ int Γ ` pf(¬(x3 rop x4)) ≤ Γ(x1) Γ ` pf(x3 rop x4) ≤ Γ(x2)

Γ ` [x1 : τ1, x2 : τ2] if x3 rop x4 goto n

Γ ` goto n Γ ` halt

deffactP (x) The factdeffactP (x) depends upon the defining instruction ofx in P , and is given by these rules:

deffactP (x : τ := i) = x=i
deffactP (x : τ := len(x′)) = x=len(x′)
deffactP (x : τ := base(x′)) = x = x′@0
deffactP (x : τ := x1 bopx2) = x=x1 bopx2

Figure 14. Typing rules

POPL ’06 Submission 7 2005/11/15

The typing rules presented are for the most part syntax-directed,
and can be made algorithmic. A consideration is that the rule for
load must determine the actual array variable, which is not apparent
from the conclusion. In general, the decision prodecure only needs
to verify that the rule holds for one of the arrays available at that
program point. In practice, the correct array can be inferred by ex-
amining the type of the proof variable. We believe that judgements
on facts may be efficiently decided by an integer linear program-
ming tool such as the Omega Calculator [21] with two caveats.
First, such tools reason overZ rather than 32- or 64-bit integers.
Second, they restrict our fact language for integer relations (and,
thus, compiler reasoning) to affine expressions. This is, however,
sufficient to capture current STARJIT optimizations.

4. Compiler optimizations
In this section we examine compiler optimizations in the context of
the core language. We demonstrate how an optimizing compiler can
preserve both proof variables and their type information. We argue
that our ideas greatly simplify this process. In previous work, an im-
plementer would need to modify each optimization to update safety
information. In our representation, we leverage existing compiler
infrastructure to do the bulk of the work. In particular, most control-
flow or data-flow optimizations require virtually no changes at all.
Others that incorporate algebraic properties only need to be modi-
fied to record the compiler’s reasoning. In the next section we will
discuss how these ideas can be extended from the core language to
full Java.

In general, there are two ways in which an optimization can
maintain the correctness of the proofs embedded in the program.
First, it can apply the transformation to both computation and proof
simultaneously. This is sufficient for the majority of optimizations.
Second, it can create new proofs for the facts provided by the
original computation. As we show below, this is necessary for
the few optimizations that infer new properties that affect safety.
In the rest of this section we show how these general principles
apply to individual compiler optimizations on a simple example.
For this example, we show how to generate a low-level intermediate
representation that contains safety information and how to preserve
this information through several compiler optimizations, such as
loop invariant code motion, common subexpression elimination,
array bounds check elimination, strength reduction of array element
pointer, and linear function test replacement.

The example we will consider, in pseudo code, is:

for (i=0; i<a.length; i++) {
· · · = a[i];

}
Where we assume thata is a non-null integer array, thata is not
modified in the loop, and that the pseudo code array subscripting
has an implicit bounds check. Although this example does not
reflect the full complexity of Java, it is sufficient to illustrate the
main ideas of propagating safety information through the compiler
optimizations. Section 5 discusses additional issues in addressing
full Java.

The first compilation step for our example lowers the program
into a low-level representation suitable for optimization, as shown
in Figure 15. In our system, lowering generates instructions that ex-
press the computation and any required proofs of the computation’s
safety. For example, a typical compiler would expand an array ele-
ment accessa[i] into the following sequence: array bounds checks,
computation of the array element address, and a potentially unsafe
load from that address. In our system, the compiler also generates
proof variables that show that the array indexi is within the ar-
ray bounds (q4 for the lower bound andq6 for the upper bound)
and that the load accesses an elementi of the arraya (proof vari-

i1 : int :=0
uB : int :=len(a)

LOOP :
i2 : int :=φ(i1, i3)
[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

aLen : int :=len(a)
q3 : pf(aLen=len(a)) :=pffact(aLen)

q4 : pf(0≤i2) :=checkLowerBound(i2, 0)

q5 : pf(i2<aLen) :=checkUpperBound(i2, aLen)

q6 : pf(i2<len(a)) :=pfand(q3, q5)

aBase: ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)
addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val
i3 : int := i2+1

goto LOOP
EXIT :

. . .

Figure 15. Low-level representation for array load in loop

i1 : int :=0
uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase: ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

LOOP :
i2 : int :=φ(i1, i3)
[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q4 : pf(0≤i2) :=checkLowerBound(i2, 0)

q5 : pf(i2<uB) :=checkUpperBound(i2, uB)

q6 : pf(i2<len(a)) :=pfand(q3, q5)

addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val
i3 : int := i2+1

goto LOOP
EXIT :

. . .

Figure 16. IR after CSE and loop invariant code motion

ableq9). The conjunction of these proofs is sufficient to type check
the load instruction according to the typing rules in Figure 14. The
proof variables are generated by the explicit array bounds checks
(which we use as syntactic sugar for the branches that transfer con-
trol to a halt instruction if the bounds check fails) and bypffact
andpfand statements that encode arithmetic properties of the ad-
dress computation as the types of proof variables.

Next, we take the example in Figure 15 through several common
compiler optimizations that are employed by STARJIT to generate
efficient code for loops iterating over arrays (Figures 16 - 19). The
result is highly-optimized code with an embedded proof of program
safety.

We start, in Figure 16, by applying several basic data-flow op-
timizations such as CSE, dead code elimination, and loop invari-
ant code motion. An interesting property of these optimizations
in our system is that they require no modification to preserve the

POPL ’06 Submission 8 2005/11/15

i1 : int :=0
q11 : pf(i1=0) :=pffact(i1)

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase: ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)

LOOP :
i2 : int :=φ(i1, i3)
q4 : pf(0≤i2) :=φ(q11, q13)

[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q6 : pf(i2<len(a)) :=pfand(q3, q1)

addr : ptr?〈int〉 :=aBase+i2
q8 : pf(addr=aBase+i2) :=pffact(addr)

q9 : pf(addr=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr) [q10]
. . . : . . . :=val
i3 : int := i2+1
q12 : pf(i3=i2+1) :=pffact(i3)

q13 : pf(0≤i3) :=pfand(q4, q12)

goto LOOP
EXIT :

. . .

Figure 17. IR after bound check elimination

safety proofs. They treat proof variables identically to other terms,
and, thus, are automatically applied to both the computation and
the proofs. For example, common subexpression elimination and
copy propagation replaceall occurrences ofaLenwith uB, includ-
ing those that occur in proof types. The type of the proof variable
q3 is updated to match its new definitionpffact(uB).

In Figure 17, we illustrate array bounds check elimination. In
the literature [4], this optimization is typically formulated to re-
move redundant bounds checks without leaving any trace of its rea-
soning in the program. In such an approach, a verifier must effec-
tively repeat the optimization reasoning to prove program safety. In
our system, an optimization cannot eliminate an instruction that de-
fines a proof variable without constructing a new definition for that
variable or removing all uses of that variable. Intuitively, the com-
piler must record in a new definition its reasoning about why the
eliminated instruction was redundant. Consider the bounds checks
in Figure 16. The lower bound check that verifies that0≤i2 is
redundant becausei2 is a monotonically increasing variable with
the initial value 0. Formally, the facts thati1=0, i2=φ(i1, i3) and
i3=i2+1 imply that0≤i2. This reasoning is recorded in the trans-
formed program through a new definition of the proof variableq4

and the additional proof variablesq11 andq13. We use SSA to con-
nect these proofs at the program level. The upper bound check that
verifies thati2<len(a) (proof variableq5) is redundant because
theif statement guarantees the same condition (proof variableq1).
Because the new proof for the factq5 is already present in the pro-
gram, the compiler simply replaces all uses of ofq5 with q1.

In Figure 18, we perform operator strength reduction (OSR) [9]
to find a pointer that is an affine expression of a monotonically in-
creasing or decreasing loop index variable and to convert it into an
independent induction variable. In our example, OSR eliminatesi
from the computation ofaddr by incrementing it directly. Because
variableaddr is used in theq8 := pffact(addr) statement, the
compiler cannot modify the definition ofaddr without also mod-
ifying the definition of q8 (otherwise, the transformed program
would not type check). Informally, the compiler must reestablish
the proof that the fact trivially provided by the original definition
still holds. In our system, OSR is modified to construct a new proof
for the fact trivially implied by the original pointer definition by

i1 : int :=0
q11 : pf(i1=0) :=pffact(i1)

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase: ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)
addr1 : ptr?〈int〉 :=aBase+i1
q14 : pf(addr1=aBase+i1) :=pffact(addr1)

LOOP :
i2 : int :=φ(i1, i3)
q4 : pf(0≤i2) :=φ(q11, q13)

addr2 : ptr?〈int〉 :=φ(addr1, addr3)
q8 : pf(addr2=aBase+i2) :=φ(q14, q16)

[q1 : pf(i2<uB), q2 : . . .] := if uB≤i2 goto EXIT

q6 : pf(i2<len(a)) :=pfand(q3, q1)

q9 : pf(addr2=a@i2) :=pfand(q7, q8)

q10 : pf(a@0≤addr<a@len(a)) :=pfand(q4, q6, q9)

val : int :=ld(addr2) [q10]
. . . : . . . :=val
i3 : int := i2+1
q12 : pf(i3=i2+1) :=pffact(i3)

addr3 : ptr?〈int〉 :=addr2+1
q15 : pf(addr3=addr2+1) :=pffact(addr3)

q13 : pf(0≤i3) :=pfand(q4, q12)

q16 : pf(addr3=aBase+i3) :=pfand(q8, q12, q15)

goto LOOP
EXIT :

. . .

Figure 18. IR after strength reduction of element address

uB : int :=len(a)
q3 : pf(uB=len(a)) :=pffact(uB)

aBase: ptr?〈int〉 :=base(a)
q7 : pf(aBase=a@0) :=pffact(aBase)
addr1 : ptr?〈int〉 :=aBase
q14 : pf(addr1=aBase) :=pffact(addr1)

addrUB : ptr?〈int〉 :=aBase+uB
q17 : pf(addrUB=aBase+uB) :=pffact(addrUB)

LOOP :
addr2 : ptr?〈int〉 :=φ(addr1, addr3)
q4 : pf(aBase≤addr2) :=φ(q14, q13)

[q1 : pf(addr2<addrUB), q2 : . . .] := if addrUB≤addr2
goto EXIT

q6 : pf(addr2<aBase+len(a)) :=pfand(q3, q1, q17)

q10 : pf(a@0≤addr2<a@len(a)) :=pfand(q4, q6, q7)

val : int :=ld(addr2) [q10]
. . . : . . . :=val
addr3 : ptr?〈int〉 :=addr2+1
q15 : pf(addr3=addr2+1) :=pffact(addr3)

q13 : pf(aBase≤addr3) :=pfand(q4, q15)

goto LOOP
EXIT :

. . .

Figure 19. IR after linear function test replacement

induction on that fact. Again, we leverage SSA to establish the new
proof. In this case,q8 : pf(addr2=aBase+i2) is defined by the phi in-
struction that merges proof variablesq14 : pf(addr1=aBase+i1) and
q16 : pf(addr3=aBase+i3).

POPL ’06 Submission 9 2005/11/15

Finally, we illustrate linear function test replacement (LFTR) [9]
in Figure 19.1 Classical LFTR replaces the testuB≤i2 in the branch
by a new testaddrUB≤addr2. If our program contained no proof
variables, this would allow the otherwise unused base variablei
to be removed from the loop. We augment the usual LFTR pro-
cedure, which rewrites occurrences of the base induction variable
i2 in loop exit tests (and exits) in terms of the derived induction
variableaddr2, to also rewrite occurrences ofi2 in the typesof
proof variables. Finally, to eliminate the original induction variable
altogether, the compiler must replace the inductive proofs on the
original variable (expressed throughφ instructions) with proofs in
terms of the derived induction variable. In this case, the compiler
must replace the proof that0≤i2 (established byq11 andq12) with
one that provesaBase≤addr2 (established byq14 andq15). Af-
ter the replacement, the loop induction variablei and any proof
variables that depend upon it are no longer live in the loop, so all
definitions of the variable can be removed. The compiler must re-
move the proof variables whose types reduce to tautologies and
apply further CSE to yield Figure 19.

5. Extensions
Our core language can easily be extended to handle other interest-
ing aspects of Java and CLI. In this section we describe several of
these extensions.

Firstly, we can handle object-model lowering through the use
of our singleton types. Consider an invoke virtual operation. It is
typically lowered into three operations: load the virtual dispatch
table (vtable), load the method pointer from the vtable, call the
method pointer passing the object as an additional argument. In
our system, these operations would look like this:

x : SomeClass := · · ·
t1 : vtable(x) := vtable(x)
t2 : (S(x), int) → int := method(foo : (int) → int, t1)
t3 : int := call(t2)(x, 10)

Here the methodfoo (taking an integer and returning an integer)
is being invoked on variablex. In the lowered code, variablet1
gets the dependent typevtable(x) meaning that it contains the
vtable from the object currently inx. Variablet2 gets the loaded
method pointer. From the typevtable(x), the typing rules can
determine a precise function type for this method pointer, namely
(S(x), int) → int, where the first argument must bex. The actual
call is the last operation, and here we passx as an explicit argument.
Sincex has typeS(x), this operation type checks.

By using singleton types based on term variables, we achieve
a relatively simple type system and still avoid the well known
typing problems with the explicit “this” argument (see [12] and
references). The existing solutions to this typing problem have
much more complicated type systems, with one exception. Chen
and Tarditi [7] have a similarly simple type system for a lowered IR
for class-based object-oriented languages. Like our system, theirs
also has class names as types, and keeps around information about
the class hierarchy, fields, and methods. They also have existentials
with subclass bounds (type variables can be bounded above by a
class, and range over any subclass of that class). They use these
existentials to express the unknown runtime type of any given
object, and thus the type of the explicit “this” argument. They
also have a class representation function that maps class names

1 Note that the code resulting from LFTR is not typable in our core lan-
guage, since we do not allow conditional branches on pointers. Extending
the language to handle this is straightforward, but requires a total ordering
on pointer values which essentially requires moving to a heap-based seman-
tics. Note though that the fact language does permitreasoningabout pointer
comparison, as used in the previous examples.

to a record type for objects in the class, and they have coercions
to convert between the two. These ideas could be adapted to our
system instead of our vtable types, and our vtable types could be
adapted to their type system. In summary, both systems are simpler
than existing, more foundational, object encodings. Theirs has type
variables and bounded existentials, ours has singleton types based
on term variables.

Java and CLI also allow null as a value in any class type, and at
runtime this null value must be checked and an exception thrown
before any invocation or field access on an object. We can use our
proof variable technique to track and ensure that these null checks
are done. We simply add a null constant to the fact expression lan-
guage. We can add an operation likep : pf(x6=null) := chknull(x)
to check thatx is not null. If x is null then it throws an exception,
if not then it assigns a proof ofx6=null to p. Similarly to array-
bounds check elimination, we can eliminate redundant null checks.

To handle exceptions we simply add explicit control flow for
them. Each potentially exception throwing operation will end a ba-
sic block and there will be edges coming out of the block corre-
sponding to exceptions that go to blocks corresponding to the ex-
ception handlers. An important point is that exceptions typically
occur before the assignment of the potentially exception throw-
ing operation, so like the conditional branches of our core lan-
guage, we must treat the definition point as occuring on the fall-
through edge rather than at the end of the basic block. So in both
x : τ := chknull(y) andx : τ := call(y)(y), the variablex is
assigned on the fall-through edge.

We can easily deal with stores to pointers by adding a store
operation of the formst(x, y) [p] wherex holds the pointer,y
the value to store, andp a proof thatx is valid. The type rule for
this operation is:

Γ ` Γ(x) ≤ ptr?〈τ〉 Γ ` Γ(y) ≤ τ
Γ ` Γ(p) ≤ pf(z@0≤x∧x<z@len(z))

Γ `P st(x, y) [p]

Modifying our formalisation and type soundness proof to accomo-
date stores would be straightforward.

Java and CLI have mutable covariant arrays, and thus require
array-store checks at runtime. In particular, when storing into an
array, the runtime must check that the object being stored is com-
patible with the runtime element type of the array (which could be
a subtype of the static element type). In our implementation we use
types of the formelem(x) to stand for the runtime element type of
arrayx. The load base operation onx actually returns something of
typeptr?〈elem(x)〉. The array-store check produces a proof value
that can be used to prove that some other variable has typeelem(x)
and we have a coercion to use the proof value to change the vari-
able’s type. The end of a lowered array store would look something
like this:

x : array(C) := · · ·
y : C := · · ·
· · ·
p1 : pf(x6=null∧x@0≤t∧t<x@len(x)) := · · ·
p2 : pf(y:elem(x)) := chkst(x, y)
st(t, retype(y, p2)) [p1]

One technicality is worth noting. In order to avoid circularities
between the type system and the fact language, and to avoid making
the fact language’s decision procedure mutually dependent upon
the subtype checker, we restrict the types that can appear in a fact
of the formx : τ to those that do not mention proof types.

Downcasts are similar to store checks, and we can treat them in
a similar way. Achkcast(x : C) operation checks thatx is in type
C and returns a proof of this fact, otherwise it throws an exception.
The actual subtype checks performed at runtime in our implementa-

POPL ’06 Submission 10 2005/11/15

tion are generally done by the virtual machine itself, and the virtual
machine is not type checked by the type system of our JIT. How-
ever, we do partially inline this operation to include some common
fast cases, and to expose some parts to redundant elimination and
CSE. For example, if a object is null then it is in any reference type
and can be stored into any reference array or downcast to any ref-
erence type. Another example is comparing the vtable of an object
against the vtable of a specific class, if these are equal then that ob-
ject is in that class. Such comparisons produce facts in our system
of the formx=null or vtable(x)=vtable(C). We can simply
add axioms to our fact language likèx=null =⇒ x : C or
` vtable(x)=vtable(C) =⇒ x : C.

6. Implementation Status
The current implementation of the STARJIT compiler generates
and maintains proof variables throughout its compilation process to
enable safe implementation of certain optimizations in the presence
of check elimination (to be described in a forthcoming paper). For
their initially designed role in optimizations, proof variables did not
require proof types: optimizations do not need to know the reason
an optimization was safe, but only its safety dependences. As such,
the current STARJIT representation is similar to that described in
Section 2 with some of the extensions in Section 5.

STARJIT implements all of the optimizations discussed in this
paper as well as more described in [1]. We modified each opti-
mization, if necessary, to correctly handle proof variables. Array
bounds check elimination and operator strength reduction required
the most significant modification, as described in Section 4. For
partial inlining of virtual machine type checking functions, as de-
scribed in Section 5, we updated the definition of proof variables to
established that a variable has the checked type. We also modified
method inlining to properly establish the type of inlined methods.
For each parameter of a method, we added a proof variable that es-
tablished that it had the correct type. When a method is compiled
independently, that proof variable is trivially defined at the method
entry (as parameter types to a method are guaranteed by the run-
time environment). When the method is inlined, the corresponding
proof variables must be defined by the calling method instead. As
method call operations require proof variables for each parameter
in our system, this information is readily available. Most optimiza-
tions, however, did not require significant changes for the reasons
outlined in this paper.

An early version of a type verifier which inferred proof types it-
self was implemented. This implementation was particularly help-
ful in finding bugs within STARJIT, but was insufficient for com-
plete verification of optimized code. In particular, the inference al-
gorithm was insufficient for some more complicated optimization
situations, such as the LFTR example (without proof type informa-
tion) in Section 4. We are confident that extending the compiler to
use precise proof types for proof variables will be straightforward,
using the framework developed in this paper.

7. Related Work
As far as we are aware, SafeTSA [24, 2] is the only other example
of a type-safe SSA representation in the literature. The motivation
of their work is rather different than ours. SafeTSA was designed
as an alternative to Java bytecode, whereas our representation is de-
signed to be a low-level intermediate language for a bytecode com-
piler. SafeTSA can represent certain optimizations, such as CSE
and limited check elimination, that Java bytecode does not. How-
ever, in our classification in Section 2, SafeTSA is a refinement-
style representation and, thus, cannot represent the effect of many
of the low-level optimizations we discuss here. For example, it can-
not represent the safety of check elimination based upon a previous

branch or the construction of an unsafe memory address as illus-
trated in Figure 7. On the other hand, we do not support their notion
of referential security: the property that a program must be safe by
construction.

While most of the work on certified code focuses on the final
machine code representation, there has been previous work on
intermediate representations that allow verification of the memory
safety of highly optimized machine level code. One of the major
differences between the various approaches lies in the degree to
which safety information is made explicit.

On the side of less explicit information are the SpecialJ com-
piler [8] and DTAL [26]. Both approaches record loop invariants,
but not explicit safety dependences. This makes verification harder
(all available invariants must be considered by the decision pro-
cedure), interferes with more optimizations (such as loop peeling)
than our approach, and makes removing dead invariants much more
difficult (because invariants never have explicit uses).

At the other end of the spectrum, there are other systems that not
only represent dependences explicitly as we do, but also record ex-
actly why the dependences imply safety for each instruction, using
proofs, instead of relying on a decision procedure during checking,
as in our system. The LTT system of Crary and Vanderwaart [10]
and the TSCB system of Shao et al. [22], developed independently,
both take this approach, albeit in the setting of a functional or
mostly-functional language. Both systems are designed around the
idea of incorporating a logic into a type theory, in order to combine
the benefits of proof-carrying code [19] with the convenience of
a type system. LTT and TSCB adopt the linear logical framework
LLF and the Calculus of Inductive Constructions, respectively, as
their proof languages. Incorporating a proof system also gives them
more flexibility, as they can express a variety of properties within a
single framework.

The lack of explicit proofs in the representation forces us to
use a decision procedure during typechecking. This limits us to
decidable properties, and may be less suited for certified code
applications where the added complexity of a decision procedure
in the verifier may be undesirable.

On the other hand, a system such as ours is much more suited
to use in the internals of an optimizing compiler. For the limited
use that we need proofs for—to verify the correctness of checks
which are eliminated by a real optimizing compiler—we can get
away with a vastly simpler system, one that imposes much less of
a burden on the compiler than more syntactically heavy systems.
Moreover, for applications of certified code, we believe that it
should be possible to take optimized intermediate code in the style
presented here and translate it, as part of code generation, to a
more explicit form in the style of LTT or TSCB, thereby reaping
the benefits of both approaches, perhaps by following the Special
J model of using a proof generating theorem prover. However, this
remains future work.

Finally, our proof variables are also similar to the Jalapeño Java
system’s condition registers as described in [6, 14]. Both are mech-
anisms to represent control-flow information as abstract value de-
pendences. Their usage, however, is more limited. Condition regis-
ters are not used to express general safety information or to support
verification of code. Instead, they are used by the compiler to model
control flow between a check operation and all (rather than just po-
tentially unsafe) instructions that follow it. Jalapeño uses condition
registers to collapse control flow due to exceptions into a single ex-
tended block and, in that block, to prevent instruction reordering
that would violate control flow dependences.

8. Conclusions
This paper has shown a typed low-level program representation
that preserves memory safety dependences in highly-optimizing

POPL ’06 Submission 11 2005/11/15

type-preserving compilers. Our representation encodes safety de-
pendences as first-class term-level proof variables that capture the
essential memory-safety dependences in the program without artifi-
cially constraining optimizations—previous approaches that piggy-
back safety dependence on top of value dependence inhibit opti-
mization opportunities. Our representation encodes proofs of mem-
ory safety as dependent types associated with proof variables. Ex-
perience implementing this representation in the STARJIT com-
piler has demonstrated that a highly-optimizing Java JIT compiler
can easily generate and maintain this representation in the pres-
ence of aggressive SSA-based optimizations such as bounds check
elimination, value numbering, strength reduction, linear function
test replacement, and others. Using explicit proof values and proof
types, modern optimizing compilers for type-safe languages can
now generate provably safe yet low-level intermediate representa-
tions without constraining optimizations.

References
[1] A DL-TABATABAI , A.-R., BHARADWAJ, J., CHEN, D.-Y., GHU-

LOUM , A., MENON, V. S., MURPHY, B. R., SERRANO, M., AND

SHPEISMAN, T. The StarJIT compiler: A dynamic compiler for man-
aged runtime environments.Intel Technology Journal 7, 1 (February
2003).

[2] A MME , W., DALTON , N., VON RONNE, J., AND FRANZ, M.
SafeTSA: a type safe and referentially secure mobile-code repre-
sentation based on static single assignment form. InProceedings of
the ACM SIGPLAN 2001 conference on Programming language de-
sign and implementation(Snowbird, UT, USA, 2001), pp. 137–147.

[3] B ILARDI , G., AND PINGALI , K. Algorithms for computing the static
single assignment form.J. ACM 50, 3 (2003), 375–425.

[4] BODÍK , R., GUPTA, R., AND SARKAR , V. ABCD: Eliminating
array bounds checks on demand. InProceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation(Vancouver, British Columbia, Canada, 2000),
pp. 321–333.

[5] BRIGGS, P., COOPER, K. D., AND SIMPSON, L. T. Value
numbering.Software—Practice and Experience 27, 6 (June 1996),
701–724.

[6] CHAMBERS, C., PECHTCHANSKI, I., SARKAR , V., SERRANO,
M. J., AND SRINIVASAN , H. Dependence analysis for Java. In
Proceedings of the 12th International Workshop on Languages and
Compilers for Parallel Computing(1999), vol. 1863 ofLecture Notes
in Computer Science, pp. 35–52.

[7] CHEN, J., AND TARDITI , D. A simple typed intermediate language
for object-oriented languages. InProceedings of the 32nd Annual
ACM Symposium on Principles of Programming Languages(Long
Beach, CA, USA, Jan. 2005), ACM Press, pp. 38–49.

[8] COLBY, C., LEE, P., NECULA, G. C., BLAU , F., PLESKO, M., AND

CLINE , K. A certifying compiler for Java. InPLDI ’00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming language
design and implementation(New York, NY, USA, 2000), ACM Press,
pp. 95–107.

[9] COOPER, K. D., SIMPSON, L. T., AND V ICK , C. A. Operator
strength reduction.ACM Transactions on Programming Languages
and Systems (TOPLAS) 23, 5 (September 2001), 603–625.

[10] CRARY, K., AND VANDERWAART, J. An expressive, scalable type
theory for certified code. InACM SIGPLAN International Conference
on Functional Programming(Pittsburgh, PA, 2002), pp. 191–205.

[11] CYTRON, R., FERRANTE, J., ROSEN, B., WEGMAN, M., AND

ZADECK, K. An efficient method of computing static single
assignment form. InProceedings of the Sixteenth Annual ACM
Symposium on the Principles of Programming Languages(Austin,
TX, Jan. 1989).

[12] GLEW, N. An efficient class and object encoding. InProceedings
of the 15th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages(Minneapolis, MN, USA, Oct. 2000), ACM
Press, pp. 311–324.

[13] GROSSMAN, D., AND MORRISETT, J. G. Scalable certification
for typed assembly language. InTIC ’00: Selected papers from the
Third International Workshop on Types in Compilation(London, UK,
2001), Springer-Verlag, pp. 117–146.

[14] GUPTA, M., CHOI, J.-D.,AND HIND , M. Optimizing Java programs
in the presence of exceptions. InProceedings of the 14th European
Conference on Object-Oriented Programming - ECOOP ’00 (Lecture
Notes in Computer Science, Vol. 1850)(June 2000), Springer-Verlag,
pp. 422–446.

[15] IGARASHI, A., PIERCE, B., AND WADLER, P. Featherweight Java:
A minimal core calculus for Java and GJ.ACM Transactions on
Programming Languages and Systems (TOPLAS) 23, 3 (May 2001),
396–560. First appeared in OOPSLA, 1999.

[16] KNOOP, J., RÜTHING, O., AND STEFFEN, B. Lazy code motion.
In Proceedings of the SIGPLAN ’92 Conference on Programming
Language Design and Implementation(San Francisco, CA, June
1992).

[17] MORRISETT, G., CRARY, K., GLEW, N., GROSSMAN, D.,
SAMUELS, R., SMITH , F., WALKER , D., WEIRICH, S., AND

ZDANCEWIC, S. TALx86: A realistic typed assembly language. In
Second ACM SIGPLAN Workshop on Compiler Support for System
Software(Atlanta, Georgia, 1999), pp. 25–35. Published as INRIA
Technical Report 0288, March, 1999.

[18] MORRISETT, G., WALKER , D., CRARY, K., AND GLEW, N. From
System F to typed assembly language.ACM Transactions on
Programming Languages and Systems (TOPLAS) 21, 3 (May 1999),
528—569.

[19] NECULA, G. Proof-carrying code. InPOPL1997(New York, New
York, January 1997), ACM Press, pp. 106–119.

[20] NECULA, G. C., AND LEE, P. The design and implementation
of a certifying compiler. InPLDI ’98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementation(New York, NY, USA, 1998), ACM Press, pp. 333–
344.

[21] PUGH, W. The Omega test: A fast and practical integer programming
algorithm for dependence analysis. InProceedings of Supercomput-
ing ’91 (Albuquerque, NM, Nov. 1991).

[22] SHAO, Z., SAHA , B., TRIFONOV, V., AND PAPASPYROU, N. A
type system for certified binaries. InProceedings of the 29th Annual
ACM Symposium on Principles of Programming Languages(January
2002), ACM Press, pp. 216–232.

[23] VANDERWAART, J. C., DREYER, D. R., PETERSEN, L., CRARY,
K., AND HARPER, R. Typed compilation of recursive datatypes.
In Proceedings of the TLDI 2003: ACM SIGPLAN International
Workshop on Types in Language Design and Implementation(New
Orleans, LA, January 2003), pp. 98–108.

[24] VON RONNE, J., FRANZ, M., DALTON , N., AND AMME , W.
Compile time elimination of null- and bounds-checks. In3rd
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-
3) (December 2000).

[25] WALKER , D., CRARY, K., AND MORISETT, G. Typed memory man-
agement via static capabilities.ACM Transactions on Programming
Languages and Systems (TOPLAS) 22, 4 (July 2000), 701–771.

[26] X I , H., AND HARPER, R. Dependently typed assembly language.
In International Conference on Functional Programming(September
2001), pp. 169–180.

POPL ’06 Submission 12 2005/11/15

Γ `P v : τ in L at du L `P e is v at du L `P F at du

x ∈ dom(L) x ∈ inscopeP (du)

Γ `P L(x) : S(x) in L at du Γ `P i : int in L at du

Γ `P v : τ in L at du

Γ `P 〈v〉 : array(τ) in L at du

Γ `P v : τ in L at du

Γ `P 〈v〉@i : ptr?〈τ〉 in L at du

L `P F at du

Γ `P true : pf(F) in L at du

Γ `P v : τ1 in L at du Γ ` τ1 ≤ τ2

Γ `P v : τ2 in L at du

x ∈ dom(L) x ∈ inscopeP (du)

L `P x is L(x) at du

L `P x is 〈v0, . . . , vn−1〉 at du

L `P len(x) is n at du

L `P i is i at du

L `P e1 is i1 at du L `P e2 is i2 at du

L `P e1bope2 is i1 bop i2 at du

L `P e1 is i1 at du L `P e2 is v@i2 at du

L `P e1bope2 is v@(i1 bop i2) at du

L `P e1 is v@i1 at du L `P e2 is i2 at du

L `P e1bope2 is v@(i1 bop i2) at du

L `P x is 〈v〉 at du L `P e is i at du

L `P x@e is 〈v〉@i at du

L `P e1 is 〈v0, . . . , vn〉@i1 at du L `P e2 is 〈v0, . . . , vn〉@i2 at du i1 rop i2

L `P e1rope2 at du

L `P e1 is i1 at du L `P e2 is i2 at du i1 rop i2

L `P e1rope2 at du

L `P F1 at du L `P F2 at du

L `P F1 ∧ F2 at du

Γ `P L : Γ′@V ` S

∀x ∈ V : Γ `P L(x) : Γ′(x) in L at defP (x)

Γ `P L : Γ′@V

` P vt(P) = Γ
Γ `P L : Γ@dfndAtP (pc, n)

n is an in-edge number forb wherepc = b.i
pc ∈ pcs(P)

∀x ∈ dfndAtP (pc, n) if deffactP (x) = F thenL `P F at pc

` (P, L, n, pc)

Figure 20. Typing for States, Environments, Values, and Facts

A. Appendix: Proof of Type Safety
A.1 Preliminaries

ASSUMPTION1 (Logical Soundness).If L `P F1 at du and` F1 =⇒ F2 thenL `P F2 at du.

Note that ifdomP (n1, n2) anddomP (n2, n1) thenn1 = n2. Hence strict dominance is asymetric. Thus dominance and strict dominance
induce a partial order that we can think of as a dominance tree rooted at(−1, 0) and(−1, 0).0 respectively.

Let inscopeP (du) = {x | sdomP (defP (x), du)}. The latter set is the variables we know are defined at the beginning of an instruction
(if du is the program counter). However, at the beginning of the phi instructions we also need variables in scope on the incoming edge to be
defined. Therefore, we definedfndAtP (b.0, e) to beinscopeP (e.1), dfndAtP (b.(i + 1), e) to beinscopeP (b.(i + 1)), anddfndAtP (b.i, n)
to bedfndAtP (b.i, e) wheree is then-th incoming edge tob.

The typing for states, environments, values, and facts appears in Figure 20.

A.2 Auxiliary lemmas

LEMMA 1. If L1(x) = L2(x) for all x ∈ inscopeP (du) andsdomP (du, du′) or du = du′ then:

• If Γ `P v : τ in L1 at du thenΓ `P v : τ in L2 at du′.
• If L1 `P F at du thenL2 `P F at du′.

Proof: The proof is by induction on the typing derivation. In the case of the singleton value rule and the rule for the value of an expression
that is a variable, the variable in question has to be in scope fordu, soL1 andL2 agree on its value and the variable is in scope fordu′.

COROLLARY 1 (Environment weakening).

• If L `P e is ve at du andx /∈ inscopeP (du) and thenL{x := v} `P e is ve at du
• If L `P F at du andx /∈ inscopeP (du) thenL{x := v} `P F at du

Proof: Follows immediately from lemma 1.

POPL ’06 Submission 13 2005/11/15

LEMMA 2. If Γ `P L1 : Γ@inscopeP (du), x /∈ inscopeP (du), L2 = L1{x := v} and Γ `P v : Γ(x) in L2 at defP (x) then
Γ `P L2 : Γ@inscopeP (du) ∪ {x}.

Proof: The result follows by the typing rule ifΓ `P L2(x) : Γ(x) in L2 at defP (x) for x ∈ inscopeP (du) ∪ {x}. For x in the
latter, the judgement holds by hypothesis. Forx in the former, note thatinscopeP (defP (x)) ⊆ inscopeP (du), soL1(y) = L2(y) for all
y ∈ inscopeP (defP (x)) and clearlyL1(x) = L2(x). Thus the judgement holds by hypothesis and Lemma 1.

Note that subtyping is reflexive and transitive.

LEMMA 3 (Subtyping Inversion).

• If Γ ` τ ≤ S(x) thenτ = S(y) for somey.
• If Γ ` S(x) ≤ τ then eitherτ = S(x) or Γ ` Γ(x) ≤ τ .
• If Γ ` array(τ1) ≤ array(τ2) thenΓ ` τ1 ≤ τ2.
• If Γ ` ptr?〈τ1〉 ≤ ptr?〈τ2〉 thenΓ ` τ1 ≤ τ2.
• If Γ ` pf(F1) ≤ pf(F2) then` F1 =⇒ F2.
• The following are not derivable:Γ ` int ≤ array(τ), Γ ` int ≤ ptr?〈τ〉, Γ ` int ≤ S(x), Γ ` int ≤ pf(F),

Γ ` array(τ) ≤ int, Γ ` array(τ) ≤ ptr?〈τ
′〉, Γ ` array(τ) ≤ S(x), Γ ` array(τ) ≤ pf(F), Γ ` ptr?〈τ〉 ≤ int,

Γ ` ptr?〈τ〉 ≤ array(τ ′), Γ ` ptr?〈τ〉 ≤ S(x), Γ ` ptr?〈τ〉 ≤ pf(F), Γ ` pf(F) ≤ int, Γ ` pf(F) ≤ array(τ),
Γ ` pf(F) ≤ ptr?〈τ〉, andΓ ` pf(F) ≤ S(x).

Proof: The proof is by induction on the derivation of the subtyping judgement. The result is clear for all the rules except the transitivity rule.
There is some intermediate typeσ that is a supertype of the left type we are considering and a subtype of the right type we are considering.
For the first item,σ is a subtype ofS(x) so by the induction hypothesis,σ = S(z) for somez. Sinceσ is a supertype ofτ , by the induction
hypothesis,τ = S(y) for somey, as required. For the second item,σ is a supertype ofS(x), so by the induction hypothesis eitehrσ = S(x)
or Γ ` Γ(x) ≤ σ. In the first case, the result follows by the induction hypothesis on the other judgement. In the second case, the result
follows by transitivity of subtyping. For the third item, sinceσ is a supertype of an array type, by the induction hypothesis,σ must be an
array type, sayarray(σ′). Then by the induction hypothesis for both judgements,Γ ` τ1 ≤ σ′ andΓ ` σ′ ≤ τ2. By transitivity of
subtyping,Γ ` τ1 ≤ τ2 as required. The fourth and fifth items are similar (the fifth requires transitivity of implication in the logic). For the
sixth item, consider the cases. If the left type isint, an array type, a pointer type, or a proof type, then by the induction hypothesisσ must be
of the same form, so by the induction hypothesis again, the right type must have the same form. These are all the cases we need to consider
for the sixth item.

LEMMA 4 (Canonical Forms).If Γ `P L : Γ@V , x ∈ V , andinscopeP (y) ⊆ V for y ∈ V then:

• If Γ ` S(x) ≤ S(x′) andx′ ∈ V thenL(x) = L(x′).
• If Γ ` Γ(x) ≤ int thenL(x) is an integer.
• If Γ ` Γ(x) ≤ array(τ) thenL(x) has the form〈v〉 andΓ `P v : τ in L at defP (x).
• If Γ ` Γ(x) ≤ ptr?〈τ〉 thenL(x) has the form〈v〉@i andΓ `P v : τ in L at defP (x).
• If Γ ` Γ(x) ≤ pf(F) thenL `P F at defP (x).

Proof: For the first item, if the hypothesis holds then by Subtype Inversion eitherS(x) = S(x′) orΓ ` Γ(x) ≤ S(x′). For the former,x = x′

and the conclusion therefore holds. Thus we need only show the first item for the stronger hypothesis thatΓ ` Γ(x) ≤ S(x′) andx′ ∈ V .
The proof is by induction on the depth ofx in the dominance tree. Sincex ∈ V , by the typing rule,Γ `P L(x) : Γ(x) in L at defP (x).
This judgement can be derived by a non-subsumption rule followed by zero or more uses of the subsumption rule. Since subtyping is reflexive
and transitive, the zero or multiple uses of subsumption can be transformed into exactly one use. Consider the non-subsumption rule used:

Singleton Value Rule: In this case,L(x) = L(x′′), x′′ ∈ dom(L), x′′ ∈ inscopeP (defP (x)), and Γ ` S(x′′) ≤ Γ(x). Since
x′′ ∈ inscopeP (defP (x)), x′′ ∈ V andx′′ is less deep in the dominance tree thanx. By the induction hypothesis, the result holds
for x = x′′, we just need to show that it holds forx. If the hypothesis of the first item holds (Γ ` Γ(x) ≤ S(x′) andx′ ∈ V),
then by transitivityΓ ` S(x′′) ≤ S(x′), so by the induction hypothesis,L(x′′) = L(x′). ThusL(x) = L(x′) as required. If the
hypothesis of the third item holds (Γ ` Γ(x) ≤ array(τ)), then by Subtyping Inversion onΓ ` S(x′′) ≤ Γ(x) eitherS(x′′) = Γ(x) or
Γ ` Γ(x′′) ≤ Γ(x). For the former, we haveΓ ` S(x′′) ≤ array(τ), so by Subtyping InversionΓ ` Γ(x′′) ≤ array(τ). For the latter,
the last judgement holds by transitivity. Then by the induction hypothesisL(x′′) has the form〈v〉 andΓ `P v : τ in L at defP (x′′). By
Lemma 1,Γ `P v : τ in L at defP (x), as required. The cases for the second and fourth items are similar to the case for the third item.
If the hypothesis for the fifth item holds then by similar reasoning to the third item,Γ ` Γ(x′′) ≤ pf(F). By the induction hypothesis,
L `P F at defP (x′′). By Lemma 1,L `P F at defP (x), as required.

Integer Rule: In this case,L(x) = i for somei andΓ ` int ≤ Γ(x). The second item clearly holds. If the hypothesis of the other items
held then by transitivity of subtyping,int would be a subtype of a singleton, array, pointer, or proof type, which is not possible by
Subtyping Inversion.

Array Rule: In this case,L(x) = 〈v〉, Γ `P v : τ in L at defP (x), andΓ ` array(τ) ≤ Γ(x). If the hypothesis of the third item,
namelyΓ ` Γ(x) ≤ array(σ), holds then by transitivity of subtyping and Subtyping Inversion,Γ ` τ ≤ σ. Then by subsumption
Γ `P v : σ in L at defP (x) as required by the conclusion of item three. If the hypothesis of the other items held then by transitivity of
subtyping,array(τ) would be a subtype of a singleton, integer, pointer, or proof type, which is not possible by Subtyping Inversion.

Pointer Rule: In this case,L(x) = 〈v〉@i, Γ `P v : τ in L at defP (x), andΓ ` ptr?〈τ〉 ≤ Γ(x). If the hypothesis of the fourth
item, namelyΓ ` Γ(x) ≤ ptr?〈σ〉, holds then by transitivity of subtyping and Subtyping Inversion,Γ ` τ ≤ σ. Then by subsumption

POPL ’06 Submission 14 2005/11/15

Γ `P v : σ in L at defP (x) as required by the conclusion of item four. If the hypothesis of the other items held then by transitivity of
subtyping,ptr?〈τ〉 would be a subtype of a singleton, integer, array, or proof type, which is not possible by Subtyping Inversion.

Proof Rule: In this case,L `P F ′ at defP (x) andΓ ` pf(F ′) ≤ Γ(x). If the hypothesis of the fifth item, nameΓ ` Γ(x) ≤ pf(F), held,
then by transitivity of subtyping and Subtyping Inversion,` F ′ =⇒ F . Then by Logical Soundness,L `P F at defP (x), as required
by the conclusion to item five. If the hypothesis of the other items held then by transitivity of subtyping,pf(F ′) would be a subtype of a
singleton, integer, array, or pointer type, which is not possible by Subtyping Inversion.

LEMMA 5. For anyb a block number forP andn an incoming edge number tob, inscopeP (b.i) ⊆ dfndAtP (b.i, n).

Proof: If i > 0 then the result holds by definition. Otherwise let(b′, b) be then-th incoming edge tob. ThendfndAtP (b.i, n) =
inscopeP ((b′, b).1). Let N be the parent ofb in the dominance tree forP . If N is not equal to or an ancestor of(b′, b) then there exists a
path from(−1, 0) to (b′, b) that does not includeN . We can extend this path with the edge from(b′, b) to b to obtain a path from(−1, 0) to b
that does not includeN contradicting the fact thatN is b’s parent in the dominance tree. Letx ∈ inscopeP (b.0) thensdomP (defP (x), b.0).
Let defP (x) = b′′.i thendomP (b′′, N), sodomP (b′′, (b′, b)). Since(b′, b).1 does not define any variables,sdomP (defP (x), (b′, b).1) and
x ∈ inscopeP ((b′, b).1), as required.

LEMMA 6 (Canonical Forms 2).If Γ `P L : Γ@inscopeP (du) andΓ `P v : τ in L at du then:

• If τ = int thenv = i.
• If τ = array(σ) thenv = 〈v〉 andΓ `P v : σ in L at du.
• If τ = ptr?〈σ〉 thenv = 〈v〉@i andΓ `P v : σ in L at du.
• If τ = S(x) thenv = L(x) andx ∈ inscopeP (du).
• If τ = pf(F) thenv = true andL `P F at du.

Proof: The proof is by induction on the depth ofdu is the dominance tree. The judgementΓ `P v : τ in L at du can only be derived by
a nonsubsumption rule following by zero or more uses of the subsumption rule. Since subtyping is reflexive and transitive, we can turn these
uses of subsumption into exactly one use. Consider the nonsubsumption rule used:

Singleton Rule: In this casev = L(x), x ∈ inscopeP (du), andΓ ` S(x) ≤ τ . If τ = S(x) then the result holds. Otherwise, by Subtyping
InversionΓ ` Γ(x) ≤ τ . By hypothesis,Γ `P v : Γ(x) in L at defP (x). By subsumption,Γ `P v : τ in L at defP (x). Since
x ∈ inscopeP (du), defP (x) ∈ inscopeP (du), so sdomP (defP (x), du). ThusdefP (x) is higher in the dominance tree thandu. The
result follows by the induction hypothesis.

Integer Rule: In this casev is somei and by Subtyping Inversionτ must beint, as required.
Array Rule: In this casev is 〈v〉, Γ `P v : τ1 in L at du, andΓ ` array(τ1) ≤ τ . By Subtyping Inversionτ must bearray(τ2) and

Γ ` τ1 ≤ τ2. By subsumption,Γ `P v : τ2 in L at du, as required.
Pointer Rule: In this casev is ARRAY v@i, Γ `P v : τ1 in L at du, andΓ ` ptr?〈τ1〉 ≤ τ . By Subtyping Inversionτ must beptr?〈τ2〉

andΓ ` τ1 ≤ τ2. By subsumption,Γ `P v : τ2 in L at du, as required.
Proof Rule: In this casev is true, L `P F1 at du, andΓ ` pf(F1) ≤ τ . By Subtyping Inversionτ must bepf(F2) and` F1 =⇒ F2. By

Logical SoundnessL `P F2 at du, as required.

LEMMA 7. If Γ `P L : Γ@inscopeP (du) then:

• If `P τ at defP (x) andΓ `P v : τ{x1 := x2} in L at du thenΓ `P v : τ in L{x1 := L(x2)} at defP (x).
• If `P F at defP (x) andL `P F{x1 := x2} at du thenL{x1 := L(x2)} `P F at defP (x).
• If `P e at defP (x) andL `P e{x1 := x2} is v at du thenL{x1 := L(x2)} `P e is v at defP (x)

Proof: Let ρ = x1 := x2 andL′ = L{x1 := L(x2)}. The proof is by induction of the structure ofτ , F , or e. Consider the different forms
thatτ , F , or e could take:

τ = int: In this case,τ = τ{ρ}, so the hypothesis and Canonical Forms 2 imply thatv = i. The conclusion then follows by the integer
rule.

τ = array(σ): In this case,τ{ρ} = array(σ{ρ}), so by hypothesis and Canonical Forms 2,v = 〈v〉 andΓ `P v : σ{ρ} in L at du, by
the induction hypothesis,Γ `P v : σ in L′ at defP (x), so by the array rule the conclusion holds.

τ = ptr?〈σ〉: In this case,τ{ρ} = ptr?〈σ{ρ}〉, so by hypothesis and Canonical Forms 2,v = 〈v〉@i andΓ `P v : σ{ρ} in L at du. By
the induction hypothesis,Γ `P v : σ in L′ at defP (x), so by the pointer rule the conclusion holds.

τ = S(z): Let y be ρ(z). Then τ{ρ} = S(y) and by hypothesis and Canonical Forms 2,v = L(y). Since`P τ at defP (x),
z ∈ inscopeP (defP (x)). ClearlyL′(z) = L(y) andz ∈ dom(L′). Thus by the singleton vlaue rule,Γ `P v : S(z) in L′ at defP (x),
as required.

τ = pf(F): In this case,τ{ρ} = pf(F{ρ}), so by hypothesis and Canonical Forms 2,v = true andL `P F{ρ} at du. By the induction
hypothesis,L′ `P F at defP (x), and the conclusion holds by the proof value rule.

F = e1 rop e2: In this case,F{ρ} = e1{ρ} rop e2{ρ}. Since the hypothesis can be derived by only two rules, it must be the case that
L `P e1{ρ} is v1 at du, L `P e2{ρ} is v2 at du, v1 andv2 have the formsi1 andi2 or the forms〈v〉@i1 and〈v〉@i2, andi1 rop i2.

POPL ’06 Submission 15 2005/11/15

By the induction hypothesis,L′ `P e1 is v1 at defP (x) andL′ `P e2 is v2 at defP (x). The conclusion follows by applying the same
rule.

F = F1 ∧ F2: In this case,F{ρ} = F1{ρ} ∧ F2{ρ}. Since the hypothesis can be derived in only one way,L `P F1{ρ} at du and
L `P F2{ρ} at du. By the induction hypothesis,L′ `P F1 at defP (x) andL′ `P F2 at defP (x). The conclusion follows the the and
rule.

e = i: In this case the conclusion follows by the integer rule.
e = z: Let y be ρ(z). Then e{ρ} = y. The hypothesis can be derived in only one way, sov = L(y). Clearly, L′(z) = L(y) and

z ∈ dom(L′). Since`P e at defP (x), z ∈ inscopeP (defP (x)). Thus by the expression variable rule,L′ `P z is v at defP (x),
as required.

e = len(z): Let y beρ(z). Thene{ρ} = len(y). The hypothesis can be derived in only one way, soL `P y is 〈v0, . . . , vn−1〉 at du and
v = n. By the induction hypothesis,L′ `P z is 〈v0, . . . , vn−1〉 at defP (x). The conclusion follows by the length rule.

e = e1 bope2: In this case,e{ρ} = e1{ρ} bope2{ρ}. Since the hypothesis can be derived in only one way,L `P e1{ρ} is i1 at du,
L `P e2{ρ} is i2 at du, andv = i1 bop i2. By the induction hypothesis,L′ `P e1 is i1 at defP (x) andL′ `P e2 is i2 at defP (x).
The conclusion follows by the binary operation rule.

e = z@e′: Let y be ρ(z). Then e{ρ} = y@e′{ρ}. The hypothesis can be derived in only one way, soL `P y is 〈v〉 at du,
L `P e′{ρ} is i at du, andv = 〈v〉@i. By the induction hypothesis,L′ `P x is 〈v〉 at defP (x) andL′ `P e′ is i at defP (x). The
conclusion follows by the pointer rule.

A.3 Preservation

LEMMA 8. If ` P then` (P, ∅, 0, 0.0).

Proof: Straightforward given thatdfndAtP (0.0, 0) = ∅.

LEMMA 9 (Preservation).If ` S1 andS1 7→ S2 then` S2.

Proof: Assume that̀ (P, L1, e1, b.i) and(P, L1, e1, b.i) 7→ (P, L2, e2, pc). Let Γ = vt(P).
By the typing rule for programs:

1. ` P

2. Γ `P L1 : Γ@dfndAtP (b.i, e1)

3. e1 is a valid in-edge number forb
4. b.i ∈ pcs(P)

5. ∀x ∈ dfndAtP (b.i, e1) if deffactP (x) = F thenL1 `P F at b.i

If P (b.i) = ι or P (b.i) = p thenpc = b.(i + 1) ∈ pcs(P) ande2 = e1 soe2 is a valid in-edge number forpc’s block. We will show that
validity of pc ande2 for transfers in the respective rules below. Thus it remains to show that:

1. Γ `P L2 : Γ@dfndAtP (pc, e2)

2. ∀x ∈ dfndAtP (pc, e2) if deffactP (x) = F thenL2 `P F at pc

For all instructions for whichdeffactP (x) is not defined, note that (2) follows immediately by lemma 1, since the set of defined facts remains
unchanged. For instructions for whichdeffactP (x) = F , it suffices to show thatL2 `P F at pc.

The proof proceeds by case analysis on the reduction rule.

Phi rule: In this case,P (b.i) = p, p[e1] = x1 := x2, and L2 = L1{x1 := L1(x2)}. By the definitions,dfndAtP (pc, e2) =
inscopeP (pc) = inscopeP (b.i) ∪ {x1}. By Lemma 5,inscopeP (b.i) ⊆ dfndAtP (b.i, e1). Clearly by the typing rules andΓ `P

L1 : Γ@dfndAtP (b.i, e1), Γ `P L1 : Γ@inscopeP (b.i). So by Lemma 2, we just need to show thatΓ `P L1(x2) : Γ(x1) in L2 at
defP (x1) (note thatφ instructions define no facts).

Let (b′, b) be thee1’th incoming edge tob. Since the phi instructions are uses ofx2 at (b′, b).1, defP (x2) ⊆ inscopeP ((b′, b).1) =
dfndAtP (b.i, e1). By Env Typing,x2 ⊆ dom(L1). Thus by the singleton typing rule,Γ `P L1(x2) : S(x2) in L1 at (b′, b).1. By
the typing rules for phi-instructions,Γ ` S(x2) ≤ Γ(x1){ρ} whereρ is x1 := x2. Thus by subsumption,Γ `P L1(x2) : Γ(x1){ρ} in
L1 at (b′, b).1. By the typing rules,̀ P Γ(x1) at defP (x1). So by Lemma 7,Γ `P L1(x2) : Γ(x1) in L2 at defP (x1).

Constant rule: In this case,P (b.i) = x := i andL2 = L1{x := i}. Also note thatdeffactP (x) = (x = i).
By expansion of the definitions:

defP (x) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
x /∈ dfndAtP (b.i, e1)

First we must show that:
L2 `P x = i at pc

By the environment rule (sinceL2(x) = i):
L2 `P x is i at pc

By the integer rule:
L2 `P i is i at pc

So by the comparison rule:
L2 `P x = i at pc

POPL ’06 Submission 16 2005/11/15

By Lemma 2, it suffices to show thatΓ `P i : Γ(x) in L2 at b.i.
By assumption:

Γ `P x : τ := i
So by inversion:

Γ ` int ≤ Γ(x)
So by construction using the integer rule and subsumption:

Γ `P i : Γ(x) in L2 at b.i

Copy rule: In this case,P (b.i) = x1 := x2 and L2 = L1{x1 := L1(x2)}. By expansion of the definitions,defP (x1) = b.i,
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}, andx1 /∈ dfndAtP (b.i, e1). By Lemma 2, we need to show thatΓ `P L1(x2) :
Γ(x1) in L2 at b.i. The typing rule for this instruction includeΓ ` S(x2) ≤ Γ(x1). Since this instruction is a use ofx2 and the
in-scope property,x2 ∈ dfndAtP (b.i, e1), thusx1 6= x2, x2 ∈ dom(L1), L2(x2) = L1(x2), andx2 ∈ inscopeP (b.i). By the singleton
typing rule and subsumption,Γ `P L1(x2) : Γ(x1) in L2 at b.i, as required.

New array (i ≥ 0) In this caseP (b.i) = x1 : τ := newarray(x2, x3) andL2 = L1{x1 := v1}, whereL1(x2) = n, L1(x3) = v3, v1 =
〈v3, . . . , v3| {z }

n

〉.

By expansion of the definitions:
defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show thatΓ `P v1 : Γ(x1) in L2 at b.i.
By assumption:

Γ `P x1 : τ := newarray(x2, x3)
By inversion ofΓ `P x1 : τ := newarray(x2, x3):

Γ ` array(Γ(x3)) ≤ Γ(x1)
By assumption (sincex3 ∈ dfndAtP (b.i, e1)):

Γ `P v3 : Γ(x3) in L2 at b.i
So by construction, using the newarray rule and subsumption:

Γ `P v1 : Γ(x1) in L2 at b.i

New array (i < 0)
The proof proceeds exactly as in the previous case, except that there is no proof obligation forv3, and hence the construction from the

newarray rule follows immediately.
Array length rule In this case,P (b.i) = x1 : τ := len(x2) andL2 = L1{x1 := n} whereL1(x2) = 〈v0, . . . , vn−1〉. Also note that

deffactP (x1) = (x = len(x2))
By expansion of the definitions:

defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
x2 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

First we must show that:
L2 `P x1 = len(x2) at pc

By the environment rule (sinceL2(x1) = n, andL2(x2) = 〈v0, . . . , vn−1〉):
L2 `P x1 is n at pc
L2 `P x2 is 〈v0, . . . , vn−1〉 at pc

So by the length rule:
L2 `P len(x2) is n at pc

So by the comparison rule:
L2 `P x1 = len(x2) at pc

By Lemma 2, it suffices to show thatΓ `P n : Γ(x1) in L2 at b.i.
By assumption:

Γ `P x1 : τ := len(x2)
By inversion:

Γ ` int ≤ Γ(x1)
So the result holds by construction using the integer rule and subsumption.

Pointer base rule In this case,P (b.i) = x1 : τ := base(x2) andL2 = L1{x2 := v@0}, whereL1(x2) = v, v = 〈v′〉. Note that
deffactP (x1) = (x1 = x2@0)
By expansion of the definitions:

defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

POPL ’06 Submission 17 2005/11/15

First we must show that:
L2 `P x1 = x2@0 at pc

By the environment rule (sinceL2(x1) = v@0, andL2(x2) = v):
L2 `P x1 is v@0 at pc
L2 `P x2 is v at pc

So by the managed pointer rule:
L2 `P x2@0 is v@0 at pc

So by the comparison rule:
L2 `P x1 = x2@0 at pc

By Lemma 2, it suffices to show thatΓ `P v@0 : Γ(x1) in L2 at b.i.
By assumption:

Γ `P x1 : τ := base(x2)
By inversion:

Γ ` Γ(x2) ≤ array(τ2)
Γ ` ptr?〈τ2〉 ≤ Γ(x1)

So by Canonical Forms:
Γ `P v′ : τ2 in L1 at defP (x2)

Note thatb.i is a use ofx2, so by the in-scope property,sdomP (defP (x2), b.i), andx1 /∈ inscopeP (defP (x1)).
So by lemma 1:

Γ `P v′ : τ2 in L2 at b.i
So the result holds by construction using the managed pointer rule and subsumption.

Binary op rule (int) In this case,P (b.i) = x1 : τ := x2 bopx3 andL2 = L1{x1 := i2 bop i3}: whereL1(x2) = i2, L1(x3) = i3. Note
thatdeffactP (x1) = (x1 = x2 bopx3).
By expansion of the definitions:

defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

First we must show that:
L2 `P x1 = x2 bopx3 at pc

By the environment rule (sinceL2(x1) = i2 bop i3, L2(x2) = i2, andL2(x3) = i3):
L2 `P x1 is i2 bop i3 at pc
L2 `P x2 is i2 at pc
L2 `P x3 is i3 at pc

So by the integer arithmetic rule:
L2 `P x2 bopx3 is i2 bop i3 at pc

So by the comparison rule:
L2 `P x1 = x2 bopx3 at pc

By Lemma 2, it suffices to show thatΓ `P i2 bop i3 : Γ(x1) in L2 at b.i.
By assumption:

Γ `P x1 : τ := x2 bopx3

So by inversion:
Γ ` int ≤ Γ(x1)

So the result holds by construction using the integer rule and subsumption.
Binary op rule (pointer) In this case,P (b.i) = x1 : τ := x2 bopx3 and L2 = L1{x1 := v@i2 bop i3}: where L1(x2) =

v@i2, L1(x3) = i3. Note thatdeffactP (x1) = (x1 = x2 bopx3).
By expansion of the definitions:

defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

First we must show that:
L2 `P x1 = x2 bopx3 at pc

By the environment rule (sinceL2(x1) = v@(i2 bop i3), L2(x2) = v@i2, andL2(x3) = i3):
L2 `P x1 is v@(i2 bop i3) at pc
L2 `P x2 is v@i2 at pc
L2 `P x3 is i3 at pc

So by the pointer arithmetic rule:
L2 `P x2 bopx3 is v@(i2 bop i3) at pc

So by the pointer comparison rule:
L2 `P x1 = x2 bopx3 at pc

By Lemma 2, it suffices to show thatΓ `P v@i2 bop i3 : Γ(x1) in L2 at b.i.

POPL ’06 Submission 18 2005/11/15

By assumption:
Γ `P x1 : τ := x2 bopx3

So by inversion:
Γ ` Γ(x2) ≤ ptr?〈τ2〉
Γ ` Γ(x3) ≤ int
Γ ` ptr?〈τ2〉 ≤ Γ(x1)

So by Canonical Forms:
Γ `P v : τ2 in L1 at defP (x2)

Note thatb.i is a use ofx2, so by the in-scope property,sdomP (defP (x2), b.i), andx1 /∈ inscopeP (defP (x1)).
So by lemma 1:

Γ `P v : τ2 in L2 at b.i
So the result holds by construction using the managed pointer rule and subsumption.

Load rule In this case,P (b.i) = x1 : τ := ld(x2) [x3] andL2 = L1{x1 := vi}: whereL1(x2) = 〈v0, . . . , vn〉@i, 0 ≤ i ≤ n.
By expansion of the definitions:

defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2, x3 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show thatΓ `P vi : Γ(x1) in L2 at b.i.
By assumption:

Γ `P x1 : τ := ld(x2) [x3]
So by inversion:

Γ ` Γ(x2) ≤ ptr?〈τ2〉
Γ ` Γ(x3) ≤ pf(x@0≤x2∧x2<x@len(x))

Γ ` τ2 ≤ Γ(x1)
So by Canonical Forms:

Γ `P v : τ2 in L1 at defP (x2)
Note thatb.i is a use ofx2, so by the in-scope property,sdomP (defP (x2), b.i), and thatx1 /∈ inscopeP (defP (x1)).
So by lemma 1:

Γ `P v : τ2 in L2 at b.i
So in particular:

Γ `P vi : τ2 in L2 at b.i
So the result holds by subsumption.

Proof Fact In this case,P (b.i) = x1 : τ := pffact(x2) andL2 = L1{x1 := true}.
By expansion of the definitions:

defP (x1) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x1}
x2 ∈ dfndAtP (b.i, e1)
x1 /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show thatΓ `P true : Γ(x1) in L2 at b.i.
By assumption:

Γ `P x1 : τ := pffact(x2)
By inversion:

Γ ` pf(deffactP (x2)) ≤ Γ(x1)

By assumption,L is consistent. Therefore, sincex2 ∈ inscopeP (b.i), L1 `P deffactP (x2) at defP (x2).
Note thatb.i is a use ofx2, so by the in-scope property,sdomP (defP (x2), b.i), andx1 /∈ inscopeP (b.i).
So by lemma 1:

L2 `P deffactP (x2) at b.i
By thetrue rule:

Γ `P true : pf(deffactP (x2)) in L2 at b.i

By subsumption:
Γ `P true : Γ(x1) in L2 at b.i

Proof conjunction In this case,P (b.i) = x : τ := pfand(y1, . . . , yn) andL2 = L1{x := true}.
By expansion of the definitions:

defP (x) = b.i
dfndAtP (pc, e2) = dfndAtP (b.i, e1) ∪ {x}
y1, . . . , yn ∈ dfndAtP (b.i, e1)
x /∈ dfndAtP (b.i, e1)

By Lemma 2, it suffices to show thatΓ `P true : Γ(x) in L2 at b.i.
By assumption:

Γ `P x : τ := pfand(y1, . . . , yn)

POPL ’06 Submission 19 2005/11/15

By inversion:
Γ ` Γ(y1) ≤ pf(F1)

· · ·
Γ ` Γ(yn) ≤ pf(Fn)

Γ ` pf(F1∧···∧Fn) ≤ Γ(x)

By Canonical Forms:
L1 `P F1 at defP (y1)
· · ·
L1 `P Fn at defP (yn)

Note thatb.i is a use ofx1 throughyn, so by the in-scope property,sdomP (defP (y1), b.i) throughsdomP (defP (yn), b.i).
So by lemma 1:

L1 `P F1 at b.i
· · ·
L1 `P Fn at b.i

By the conjunction rule:
L1 `P F1 ∧ · · · ∧ Fn at b.i

Note thatx /∈ inscopeP (b.i).
Therefore by Weakening (lemma 1):

L2 `P F1 ∧ · · · ∧ Fn at b.i
By thetrue intro rule:

Γ `P true : F1 ∧ · · · ∧ Fn in L2 at b.i.
By subsumption:

Γ `P true : Γ(x) in L2 at b.i.

Conditional Branch Rule In this case,P (b.i) = [x1 : τ1, x2 : τ2] if x3 rop x4 goto b′ andL2 = L1{xj := true}: whereL1(x3) =
i3, L1(x4) = i4, wherej = 1 if ¬(i3 rop i4) and wherej = 2 if i3 rop i4.

It suffices to show:
edgeP (b, b′) is an in-edge number forb′

edgeP (b, b + 1) is an in-edge number for(b + 1)
b′.0 and(b + 1).0 are inpcs(P)
Γ `P L2 : Γ@dfndAtP (pc, e2)

By the context-sensitive syntactic restrictions on programs,b′ must be a block number in the program, andb must not be the last block
in the program. Therefore, by definition,b′.0 and(b + 1).0 are inpcs(P). Also by definition, there are edges in the program(b, b′) and
(b, b + 1): so the in-edge numbers are likewise well-defined.
It remains to show thatΓ `P L2 : Γ@dfndAtP (pc, e2). There are two cases:¬(i3 rop i4) andL1{x1 := true}, or i3 rop i4 and
L1{x2 := true}.
Suppose¬(i3 rop i4).
By Lemma 2, it suffices to show thatΓ `P true : Γ(x1) in L2 at b.i.
SinceL1(x3) = i3 andL1(x4) = i4, by the environment rule:

L1 `P x3 is i3 at b.i
L1 `P x4 is i4 at b.i

By assumption,¬(i3 rop i4), so by the comparison rule:
L1 `P pf(¬(x3 rop x4)) at b.i

So by lemma 1:
L2 `P pf(¬(x3 rop x4)) at b.i

So by the true introduction rule:
Γ `P true : pf(¬(x3 rop x4)) in L2 at b.i

By inversion of the typing derivation for the instruction:
Γ ` pf(¬(x3 rop x4)) ≤ Γ(x1)
Γ ` pf(x3 rop x4) ≤ Γ(x2)

So by subsumption:
Γ `P true : Γ(x1) in L2 at b.i

The argument is similar wheni3 rop i4).
Goto rule: In this caseP (b.i) = goto b′, L2 = L1, pc = b′.0, ande2 = edgeP (b, b′). By the syntactic restrictionsb′ must be a

valid block number, sob′.0 ∈ pcs(P). Since(b, b′) is an edge,edgeP (b, b′) is a valid in-edge number forb′. By the definitions
dfndAtP (pc, e2) = inscopeP ((b, b′).1) = inscopeP (b.i) = dfndAtP (b.i, e1). ThusΓ `P L2 : Γ@dfndAtP (pc, e2) follows from
(2).

A.4 Progress

LEMMA 10 (Env Typing).If Γ `P L : Γ@dfndAtP (pc, n) andx ∈ dfndAtP (pc, n), thenL(x) is well defined.

Proof: By inversion of the environment typing rules.

LEMMA 11 (Progress).If ` S thenS is not stuck.

POPL ’06 Submission 20 2005/11/15

Proof: Assume that̀ S andS = (P, L, e, b.i).
Recall that by the definition of̀ S

` P vt(P) = Γ
Γ `P L : Γ@dfndAtP (pc, n)
n is an in-edge number forb wherepc = b.i
pc ∈ pcs(P)

And by the definition of̀ P
P satisfies the SSA property
For eachx ∈ vt(P), and eachy ∈ fv(vt(P)), sdomP (defP (y), defP (x))
vt(P) ` p for everyp in P
vt(P) `P ι for every instructionι in P
vt(P) ` c for every transferc in P

The proof proceeds by case analysis onP (b.i).

p:
Let x1 := x2 = p[e] and(b′, b) be thee’th incoming edge tob (this is well defined by the type rules).
By the use/def definition, the instruction is a use ofx2 at (b′, b).1, so by the in-scope propertyx2 ∈ dfndAtP (b.i, e) (sincei = 0).
By the definition of̀ S above and by lemma 10, note thatx2 ∈ dom(L) and henceL(x2) are well defined.
ThereforeS 7→ (P, L{x1 := L(x2)}, e, b.(i + 1)).

x : τ := i:
In this case,S 7→ (P, L{x := i}, e, b.(i + 1)).

x1 : τ := x2:
In this case, since this instruction is a use ofx2, by the in-scope property,x2 ∈ inscopeP (b.i).
So by definition,x2 ∈ dfndAtP (b.i, e), and so by lemma 10L(x2) is defined.
ThereforeS 7→ (P, L{x1 := L(x2)}, e, b.(i + 1)).

x1 : τ := newarray(x2, x3):
It suffices to show thatL(x2) = n for some integern, and (in the case thatn >= 0) thatL(x3) = v3 for some valuev3.
By definition,x2, x3 ∈ inscopeP (b.i), and so by definition,x2.x3 ∈ dfndAtP (b.i, e).
Therefore, by 10L(x2) = v2 andL(x3) = v3 for somev2, v3. It suffices to show thatv2 = n for some integern.
By assumption,Γ ` Γ(x2) ≤ int, andΓ `P L : Γ@dfndAtP (b.i, e), so by Canonical Forms (lemma 4),L(x2) = v2 = n for some
integern.

x1 : τ := len(x2):
It suffices to show thatL(x2) = 〈v0, . . . , vn−1〉.
By assumption,Γ ` Γ(x2) ≤ array(τ2) andΓ `P L : Γ@dfndAtP (b.i, e), so by Canonical Forms (lemma 4)L(x2) = 〈v0, . . . , vn−1〉
for somen.

x1 : τ := base(x2):
It suffices to show thatL(x2) = v, v = 〈v′〉 for somev, v′.
By assumption,Γ ` Γ(x2) ≤ array(τ2) andΓ `P L : Γ@dfndAtP (b.i, e), so by Canonical Forms (lemma 4)L(x2) = 〈v0, . . . , vn−1〉
for somen.

x1 : τ := x2 bopx3:
It suffices to show thatL(x2) = v2, L(x3) = i3, for some integeri3, and where eitherv2 = i2 or v2 = v@i2 for some integeri2 and
valuev.
Recall that by assumption,Γ `P L : Γ@dfndAtP (b.i, e), and by the inscope property,x2, x3 ∈ dfndAtP (b.i, e).
By assumption,Γ ` Γ(x3) ≤ int so by Canonical Forms (lemma 4)L(x3) = i3.
There are two cases to consider forx2, corresponding to the two possible last typing rules of the derivation.

1. Suppose the last rule was the integer operation rule. Then by assumption,Γ ` Γ(x2) ≤ int, and so by Canonical Forms (lemma 4)
L(x2) = i2.

2. Suppose the last rule was the managed pointer operation rule. Then by assumption,Γ ` Γ(x2) ≤ ptr?〈τ2〉, and so by canonical
forms,L(x2) = v@i2.

x1 : τ := ld(x2) [x3]:
It suffices to show thatL(x2) = 〈v0, . . . , vn〉@i and that0 ≤ i ≤ n.
By assumption,Γ ` Γ(x2) ≤ ptr?〈τ2〉 and by the in-scope property,x2 ∈ dfndAtP (b.i, e), so by Canonical Forms (lemma 4),
L(x2) = 〈v0, . . . , vn〉@i.
Also by assumption,Γ ` Γ(x3) ≤ pf(x@0≤x2∧x2<x2@len(x)), so again by the in-scope property Canonical Forms applies. Therefore,
L `P (x@0≤x2 ∧ x2<x2@len(x)) at defP (x3), for somex.
LetD be the derivation ofL `P (x@0≤x2 ∧ x2<x2@len(x)) at defP (x3). Note that this derivation has a unique last rule.
By inversion ofD :

L `P x@0≤x2 at defP (x3)
The derivation ofL `P x@0≤x2 at defP (x3) must end in one of the two comparison rules (integer or pointer). Note though that by
Canonical Forms (above)L(x2) = 〈v0, . . . , vn〉@i, and therefore the only derivation possible for the second premise of the comparison
rules is thatL `P x2 is 〈v0, . . . , vn〉@i2 at defP (x3).

POPL ’06 Submission 21 2005/11/15

Therefore, by inversion, we have:
L `P x@0 is 〈v0, . . . , vn〉@i1 at defP (x3)
L `P x2 is 〈v0, . . . , vn〉@i2 at defP (x3)
i1 ≤ i2

By inverting the first sub-derivation, we have:
L `P x is 〈v0, . . . , vn〉 at defP (x3)
L `P e is 0 at defP (x3)

Therefore,i1 = 0. By inverting the second sub-derivation, we haveL(x2) = 〈v0, . . . , vn〉@i2, and by the Canonical Forms
L(x2) = 〈v0, . . . , vn〉@i, so by transitivity, we havei = i2. Finally, recall thati1 ≤ i2, so we have0 ≤ i.

It remains to be shown thati ≤ n.

By inversion ofD :
L `P x2<x2@len(x) at defP (x3)

By the same argument as above, this derivation must be a use of the pointer comparison rule.
Therefore, by inversion:

L `P x2 is 〈v0, . . . , vn〉@i2 at defP (x3)
L `P x@len(x) is 〈v0, . . . , vn〉@ix at defP (x3)
i2 < ix

By the same argument as above,i2 = i. It therefore suffices to show thatix = n + 1.
By inversion ofL `P x@len(x) is 〈v0, . . . , vn〉@ix at defP (x3):

L `P x is 〈v0, . . . , vn〉 at defP (x3)
L `P len(x) is ix at defP (x3)
But note that,L(x) = 〈v0, . . . , vn〉, soL `P len(x) is n + 1 at defP (x3), and henceix = n + 1.

x1 : τ := pffact(x2):
The reduction rule for this instruction always applies.

x1 : τ := pfand(x2, x3):
The reduction rule for this instruction always applies.

[x1 : τ1, x2 : τ2] if x3 rop x4 goto b′:
It suffices to show that:

L1(x3) = i3 for some integeri3
L1(x4) = i4 for some integeri4
edgeP (b, b + 1) is well-defined
edgeP (b, b′) is well-defined

Note thatx3, x4 ∈ inscopeP (b.i), sox3, x4 ∈ dfndAtP (b.i, e).
By assumption:

Γ ` Γ(x3) ≤ int
Γ ` Γ(x4) ≤ int

So by Canonical Forms (lemma 4)
L1(x3) = i3 for some integeri3
L1(x4) = i4 for some integeri4

Finally, by definition,(b, b′) and(b, b + 1) are inedges(P) and henceedgeP (b, b + 1) andedgeP (b, b′) are well-defined.
goto b′:

It suffices to show thatedgeP (b, b′) is well-defined, which follows immediately since by definition,(b, b′) is in edges(P).

A.5 Type Safety

Proof: [of Type Safety] The proof is by induction, Lemma 8, Preservation, and Progress.

POPL ’06 Submission 22 2005/11/15

