A Verifiable SSA Program Representation for Aggressive
Compiler Optimization

Vijay S. Menort Neal Glew

Yntel Labs
Santa Clara, CA 95054

Brian R. Murphy
Ali-Reza Adl-Tabatabai
2Intel China Research Center
Beijing, China
{vijay.s.menon, brian.r.murphy, tatiana.shpeisman, ali-reza.adl-tabatabai, leaf.petersen}@intel.com

Andrew McCreight *
Leaf Peterseh

Tatiana Shpeisman

3Dept. of Computer Science, Yale University
New Haven, CT 06520

aglew@acm.org

andrew.mccreight@yale.edu

Abstract

We present a verifiable low-level program representation to em-

1. Introduction
In the past decade, safe languages have become prevalent in the

bed, propagate, and preserve safety information in high perfor- general software community and have gained wide acceptance
mance compilers for safe languages such as Java and C#. Our repamong software developers. Safe languages such as Java and C# are

resentation precisely encodes safety information via static single-
assignment (SSA) [11, 3] proof variables that are first-class con-

structs in the program.
We argue that our representation allows a compiler to both (1)

particularly prominent. These languages provide a C++-like syn-
tax and feature set in conjunction with verifiable safety properties.
Foremost among these properties is memory safety, the guarantee
that a program will only read or write valid memory locations.

express aggressively optimized machine-independent code andViemory safety is crucial to both robustness and security. It pre-
(2) leverage existing compiler infrastructure to preserve safety vents common programmer memory errors and security exploits

information during optimization. We demonstrate that this ap-

such as buffer overruns through a combination of compile-time

proach supports standard compiler optimizations, requires minimal and run-time checks.

changes to the implementation of those optimizations, and does not

artificially impede those optimizations to preserve safety.

Both Java and C# were designed to allow programs to be com-
piled and distributed via bytecode formats. These formats retain the

We also describe a simple type system that formalizes type crucial safety properties of the source language and are themselves

safety in an SSA-style control-flow graph program representation.

statically verifiable. Managed runtime environments (MRTES),

Through the types of proof variables, our system enables composi-such as the Java Virtual Machine (JVM) or the Common Lan-

tional verification of memory safety in optimized code.

guage Infrastructure (CLI), use static verification to ensure that no

Finally, we discuss experiences integrating this representation memory errors have been introduced inadvertently or maliciously

into the machine-independent global optimizer ofa8JIT, a
high-performance just-in-time compiler that performs aggressive
control-flow, data-flow, and algebraic optimizations and is compet-
itive with top production systems.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guage§ Formal Definitions and Theory; D.3.4Pfogramming
Languagep Compilers; D.3.4 Programming LanguagésOpti-

mization; F.3.1 [ogics and Meanings of PrografsSpecifying
and Verifying and Reasoning about Programs

General Terms Performance, Design, Languages, Reliability,
Theory, Verification

before executing bytecode programs.

Bytecodes, however, are still rather high-level compared to na-
tive machine code. Runtime checks (e.g., array bounds checks)
are built into otherwise potentially unsafe operations (e.g., mem-
ory loads) to ease the verification process. To obtain acceptable
performance, MRTEs compile programs using a just-in-time (JIT)
compiler. A JIT compiler performs several control- and data-flow
compiler transformations and produces optimized native machine
code. In the process, runtime checks are often eliminated or sepa-
rated from the potentially unsafe operations that they protect. As far
as we are aware, all production Java and CLI JIT compilers remove
safety information during the optimization process: optimized low
level code or generated machine code is not easily verifiable. From

Keywords Typed Intermediate Languages, Proof Variables, Safety a security perspective, this precludes the use of optimized low level

Dependences, Check Elimination, SSA Formalization, Type Sys-

tems, Typeability Preservation, Intermediate Representations

* Supported in part by NSF grants CCR-0208618 and CCR-0524545.

[copyright notice will appear here]

POPL '06 Submission

code as a persistent and distributable format. Moreover, from a reli-
ability perspective it requires that the user trust that complex com-
piler transformations do not introduce memory errors.

In recent years, researchers have developed proof languages
(e.g., PCC [19] and TAL [18]) that allow a compiler to embed
safety proofs into low-level code, along with verification tech-
nigues to validate those proofs. They have demonstrated certifying
compilers that can compile Java and safe C-like languages [20, 8,
17, 13] while both performing optimizations and generating safety
proofs. Nevertheless, although the proof language and verification
process is well-developed, implementing or modifying existing op-
timizations to correctly generate and/or preserve safety information
is still an arduous and poorly understood process.

1 2005/11/15

In this paper, we introduce a new program representation frame- if (a'=null)

work for safe, imperative, object-oriented languages to aid in the while (!done {

generation, propagation, and verification of safety information b= (B)a;

through aggressive compiler optimization. In this representation = b

we encodesafety dependencethe dependences between poten-

tially unsafe operations and the control points that guarantee their ¥

safety, as abstract proof variables. These proof variables are purely - 5 -

static: they have no runtime semantics. Nevertheless, they are first Figure 1. Field load in loop

class constructs produced by control points and consumed by po-
tentially unsafe instructions. From the perspective of most compiler
transformations, they are the same as any other variable.

We argue that this representation is particularly well-suited to

use as an intermediate representation for an aggressively optimiz- s

ing compiler. We demonstrate that it supports common advanced2. Motivation

compiler optimizations without artificially constraining or exten- we define gpotentially unsafe instructioas any instruction that,

sively modifying them. In particular, we demonstrate that by carry- taken out of context, might fault or otherwise cause an illegal

ing proof values in normal variables a compiler can leverage exist- memory access at runtime. Some instructions, taken independently,
ing transformations such as SSA construction, copy propagation, are inherently unsafe. A load instruction may immediately fault if
and dead code elimination to place, update and eliminate proofjt accesses protected memory or may trigger an eventual crash by
variables. reading an incorrectly typed value. A store may corrupt memory
We illustrate our ideas in the context of the machine-independentwith an |||ega| value (e.g., if an arbitrary integer rep|aces an object’s
global optimizer of SARJIT [1], a dynamic optimizing compiler virtual table).
for Java and C#. B\RJIT was designed as a high-performance op- Consider, for example, the field access in Figure 1. Assuming
timizing compiler and is competitive in performance with the best C++-like semantics, the operatiénz dereferences memory with
production MRTE systems. We describe a prototype integration of no guarantee of safety. In general, C++ does not guaranteé that
our ideas into $ARJIT's internal representation, and we discuss refers to a real object of typ®: b may hold an an integer that
how it is able to preserve safety information through a varied set faults when used as a pointer.

of aggressive optimizations. The original motivation for the safety Assuming Java semantics, however, the field access itself

dependence representation described in this paper was for opti-checks at runtime that does not point to a null location. If the

mization rather than safety. However, a prototype implementation check succeeds, the field access executes the load; otherwise, it
of a verifier has also been developed, and this paper is intendedthrows an exception, bypassing the load. By itself, this built-in

to provide both a description of the safety dependence mechanismcheck does not ensure safety: the load also depends on the preced-

and a theoretical development of a type system based uponit. ing cast, which dynamically checks that the runtime type i
In particular, our paper makes the following contributions: in fact compatible with the typé. If the check succeeds, the cast

executes the load; otherwise, it throws an exception, bypassing the

1. We introduce a safe low-level imperative program representa- load.
tion that combines static single-assignment (SSA) form with Typically, the safety of a potentially unsafe instruction depends
explicit safety dependences, and we illustrate how it can be usedon a set of control flow points. We refer to this form of dependence
to represent highly optimized code. assafety dependencén this example, the safety of the load de-

2. We present a simple type system to verify memory safety of pends on the cast that establishes its type. We call an instruction
programs in this representation. To the best of our knowledge, contextually safevhen its corresponding safety dependences guar-
this type system is the first to formalize type checking in an antee its safety. To verify the output of a compiler optimization, we
SSA representation. While SSA is in some sense equivalent to must prove that each instruction is contextually safe.

CPS, the details are sufficiently different that our type system is
quite unlike the usual lambda-calculus style type systems and 2-1 Safety In Java
required new proof techniques. In Java and the verifiable subset of CLI, a combination of static ver-

3. We demonstrate the utility of this program representation in a ification and runtime checks guarantee the contextual safety of indi-
high-performance compiler, and we describe how a compiler vidual bytecode instructions. Static type checking establishes that
can leverage its existing framework to preserve safety informa- variables have the appropriate primitive or object type. Runtime
tion. In particular, we demonstrate that only optimizations that checks such as type tests (for narrowing operations), null pointer
directly affect memory safety, such as bounds check elimination tests, and array bounds tests detect conditions that would cause a
and strength reduction of address calculations, require signifi- fault or illegal access and throw a language-level runtime excep-
cant modification. tion instead.

Figure 2 shows Java-like bytecode instructions (using pseudo-

The remainder of the paper is organized as follows. In Section 2, registers in place of stack locations for clarity) for the code of
we motivate the explicit representation of safety dependence in anFigure 1. The Java type system guarantees that varbetids type
optimizing compiler and describe how to do this via proof variables B at compile time, while thgetfield instruction guarantees non-
in a low-level imperative program representation. In Section 3, we Null access by testing for null at runtime. The check and the static
describe a formal core language specifically dealing with array- Verifier together guarantee that the load operation will not trigger
bounds checks and present a type system with which we can verifyan illegal memory access.
programs in SSA form. In Section 4, we demonstrate how a com-
piler would lower a Java program to the core language and illustrate
how aggressive compiler optimizations produce efficient and veri- The Java bytecode format was not intended to be an intermedi-
fiable code. In Section 5, we informally describe extensions to our ate program representation for an optimizing compiler. There are
core language to capture complete Java functionality. In Section 6, a number of reasons why such a format is not suitable, but here we

we discuss the status of our current implementation, and, finally, in
Sections 7 and 8 we discuss related work and conclude.

2.2 Safety in a Low-Level Representation

POPL '06 Submission 2 2005/11/15

ifnull a goto EXIT to := getfieldaddr(a, B::x)

L: if a = null goto EXIT
ifeq donegoto EXIT if done= 0 goto EXIT
b := checkcast(a, B) checkcast(a, B)
t1 := getfield(b, B::x) L:
t1 1= 1d(t2)
goto L .-

EXIT: if done# 0 goto L

EXIT:

Figure 2. Field load with Java-like bytecode
Figure 4. Field load optimized in erasure-style representation

if a = null goto EXIT

L: if @ = null goto EXIT
if done= 0 goto EXIT L:
checkcast(a, B) if done = 0 goto EXIT
checknull(a) b := checkcast(a, B)
to := getfieldaddr(a, B::x) t3 := checknull(b)
t1 = 1d(t2) to := getfieldaddr(¢s, B::x)
t1 1= 1d(t2)
goto L oo
EXIT: goto L
EXIT:

Figure 3. Field load lowered in erasure-style representation

Figure 5. Field load lowered in refinement-style representation

will focus only on those related to safety. First, bytecodes hide re- .
dundant check elimination opportunities. For example, in Figure 2, Safety, optimizations must preserve the value flow between the
optimizations can eliminate the null check built into thetfield check and the load. Check elimination operations (such as the
instruction because of thefnull instruction. Even though sev- checknull in Figure 5) may be eliminated by optimization, but
eral operations have built-in exception checks, programmers usu-the values they produce (e.¢) must be redefined in the process.
ally write their code to ensure that these checks never fail, so such ~_From an optimization standpoint, a refinement-style represen-
Optimization Opportunities are common in Java programs_ tation is nOt |dea!. The Safety d(_?p_endence betWeen the CheCk and

Second, extraneous aliasing introduced to encode safety prop-the load is not direct. Instead, it is threaded through the address
erties hides Optimization Opportunitiesl In Figures 1 and 2l Vari_ f|e|d CalCIUIa.“On, Wthh IS I’eally just an _addltlon Opel’atlon. Whlle
ableb represents a copy af that has the type3. Any use ofa the Ioaq |tsglf cannot be performed untll thg null test, the addrgss
that requires this type information must us@stead. While this calcul_atlon is al_ways safe. A code motion or instruction schedulln_g
helps static verification, it hinders optimization. The field access compiler optimization should be free to move it above the check if
must establish thatis not null, even though thefnull statement it is deemed beneficial. In Figure 3, itis clearly legal. In Figure 5,
establishes that property an To eliminate the extra check, a re- it iS no longer possible. The refinement-style representation adds
dundancy elimination optimization must reason about aliasing due artificial constraints to the program to allow safety to be checked.
to cast operations; this is beyond the capabilities of standard aIgo-'n this case, t.he address calculation is artificially dependent on the
rithms [16, 5]. check operation. _ S

In the absence of a mechanism for tracking safety dependences, A refinement-style representation also obscures optimization
STARJIT would lower a code fragment like this to one like that ©OpPportunities by introducing multiple names for the same value.
in Figure 3. Note that thed operation is potentially unsafe and is ~ Optimizations that depend on syntactic equivalence of expressions
safety dependent on the null check. In this case, however, the safety(such as the typical implementation of redundancy elimination) be-
dependence between the null check and the load is not explicit. Al- cOme less effective. In Figure 3, is syntactically compared to
though the instructions are still (nearly) adjacent in this code, there null twice. In Figure 5, this is no longer true. In general, syntac-
is no guarantee that future optimizations will leave them so. Fig- tically equivalent operations in an erasure-style representation may
ure 4 roughly illustrates the code thatARJIT would produce for ~ no longer be syntactically equivalent in a refinement-style repre-
our example. Redundant checks are removed by a combination ofSe€ntation.

artial loop peeling (to expose redundant control flow) and com- . .

ﬁmn subegpeessio% (elimin‘;tion. The invariant address)field calcu- 2-3 A Proof Passing Representation
lation is hoisted via code motion. In this case, the dependence of theNeither the erasure-style nor refinement-style representations pre-
load on the operations that guarantee its safety (specificallyfthe cisely represent safety dependences. The erasure-style representa-
andcheckcast statements) has become obscured. We refer to this tion omits them altogether, while the refinement-style representa-
as anerasure-styldow-level representation, as safety information tion encodes them indirectly. As a result, the erasure-style rep-
is effectively erased from the program. resentation is easy to optimize but difficult to verify, while the

An alternative representation embeds safety information di- refinement-style is difficult to optimize but easy to verify.
rectly into the values and their corresponding types. The Java lan- To bridge this gap, we propose the use opmof passing
guage already does this for type refinement via cast operations.representation that encodes safety dependence directly into the
This approach also applies to null checks, as shown in Figure 5. Theprogram representation through proof variables. Proof variables act
SafeTSA representation takes this approach, extending it to arrayas capabilities for unsafe operations (similar to the capabilities of
bounds checks [24, 2] as well. We refer to this asfmement-style Walker et al. [25]). The availability of a proof variable represents
representation. In this representation, value dependences preservthe availability of a proof that a safety property holds. A potentially
the safety dependence between a check and a load. To preservensafe instruction must use an available proof variable to ensure

POPL '06 Submission 3 2005/11/15

[s1, s2] if a = null goto EXIT

L:
if done= 0 goto EXIT
s3 := checkcast(a, B)
$4 := checknull(a)
to := getfieldaddr(a, B::x)
s5 := pfand(ss, s4)
t1 = ld(tg) [85}
goto L
EXIT:

Figure 6. Field load lowered in a proof passing representation

to 1= getfieldaddr(a, B::x)
[s1,s2] if a = null goto EXIT

L:
if done= 0 goto EXIT
s3 := checkcast(a, B)
S4 1= 81
s5 := pfand(ss, s4)
t1 = ld(tz) [85}
goto L

EXIT:

Figure 7. Field load with CSE and Code Motion

contextual safety. This methodology relates closely to mechanisms
proposed for certified code by Crary and Vanderwaart [10] and
Shao et al. [22] in the context of the lambda calculus. We discuss
the relationship of our approach to this work in Section 7.

Proof variables do not consume any physical resources at run-

time: they represent abstract values and only encode safety de-

pendences. Nevertheless, they are first-class constructs in our rep
resentation. They are generated by interesting control points and
other relevant program points, and consumed by potentially unsafe
instructions as operands guaranteeing safety. Most optimizations
treat proof variables like other program variables.

Figure 6 demonstrates how we represent a load operation in a
proof passing representation. As in Figure 5, we represent safety
through value dependences, but instead of interfering with existing
values, we insert new proof variables that directly model the safety
dependence between the load and both check operations.

Figures 7 to 10 represent the relevant transformations performed
by STARJIT to optimize this code. In Figure 7, we illustrate two op-
timizations. First, $ARJIT's common subexpression elimination
pass eliminates the redundamtecknull operation. When $aR-

JIT detects a redundant expression in the right hand side of an in-
struction, it replaces that expression with the previously defined
variable. Theif statement defines the proof variaBleif the test
fails. This variable proves the propositian# null. At the defi-
nition of s4, the compiler detects that # null is available, and
redefines, to be a copy ok;. STARJIT updates a redundant proof
variable the same way as any other redundant variable.

Second, $ARJIT hoists the definition of2, a loop invariant

to := getfieldaddr(a, B::x)
[s1,s2] if a = null goto EXIT

L:
if done= 0 goto EXIT
s3 := checkcast(a, B)
s5 := pfand(ss, s1)
t1 = ld(tz) [85}
goto L

EXIT:

Figure 8. Field load with Copy Propagation

to := getfieldaddr(a, B::x)
[s1, s2] if a = null goto EXIT
if done= 0 goto EXIT
s} := checkcast(a, B)

L:
3 = plsh, o)
s5 1= pfand(s2, s1)
t1 = ld(tz) [85}
if done= 0 goto EXIT
s3 := checkcast(a, B)
goto L

EXIT:

Figure 9. Field load with Partial Loop Peeling

to := getfieldaddr(a, B::x)
[s1,s2] if a = null goto EXIT
if done= 0 goto EXIT
s3 := checkcast(a, B)
s5 := pfand(ss, s1)
- t1 = ld(tQ) [85}
if done## 0 goto L
EXIT:

Figure 10. Field load with 2nd CSE and Branch Reversal

tion duplicates the test atlone and the checkcast operation, and
makes the load instruction the new loop header. The proof variable
s3 is now defined twice, where each definition establishesdhat
has typeB on its corresponding path. The compiler leverages SSA
form to establish that the proof variable is available within the loop.

Finally, in Figure 10, another pass of common subexpression
elimination eliminates the redundactieckcast. Copy propaga-
tion propagates the correct proof variable, this time through a re-
dundant phi instruction. Note, that this final code is equivalent to
the erasure-style representation in Figure 4 except that proof vari-
ables provide a direct representation of safety. In Figure 10, it is
readily apparent that thef and checkcast statements establish
the safety of the load instruction.

In the next section we formalize our approach as a small core
language, and the following sections show its use and preservation

address calculation, above the loop. Even though the computed ad—rags compiler optimizations and extension to full Java.

dress may be invalid at this point, the address calculation is always
safe; we require a proof of safety only on a memory operation that
dereferences the address.

Figure 8 shows a step of copy propagation, which propagates
into the load instruction and eliminates the usa.gfallowing dead
code elimination to remove the definition ©f.

3. Core Language

In this section we describe a small language that captures the main
ideas of explicit safety dependences through proof variables. As
usual with core languages, we wish to capture just the essence of

Figure 9 illustrates the use of partial loop peeling to expose re- the problem and no more. The issue at hand is safety dependences,
dundant control flow operations within the loop. This transforma- and to keep things simple we will consider just one such depen-

POPL '06 Submission 2005/11/15

(P,L1,n1,b.i) — (P, L2,n2,pc) where:

P(b.7) Lo na pe Side conditions

P Ll{fl = L1(fg)} n1 b(l + 1) ﬁ[nl] =T := T2

TiTi=1 Li{z =1} ni b.(i4+1)

T1:T = To Li{z1 := Li(z2)} | m1 b.(i+1)

21 : T := newarray(ra, x3) Li{z1 :==v1} ni b.(i4+1) | Li(z2) =n, Li(x3) =v3,v1 = (v3,...,03)
——

n

1 : T := newarray(z2, x3) Li{z1 :==v1} ni b.(i+1) | Li(z2) =14,i < 0,v1 = ()

z1 : 7 := len(x2) Li{z: :=n} n1 b.(t+1) | Li(z2) = (vo,... £n71>

1 : T := base(x2) Li{z2 := v@Q0} ni b.(t+1) | Li(z2) =v,v= (V)

Tl T :=X2 bOpxg L1{CE1 = i4} ni b.(i -+ 1) Ll(xz) 7,2, Ll(afg) i3, 4 = 12 bOp’ig

Tl T =29 bOpLB3 Ll{:L'l = ’L)@i4} ni b.(i + 1) Ll(xg) = U@zz,[q(:l:g) =1i3,14 = 12 b0p7,3

z1 : 7 := 1ld(x2) [x3] Li{z1 :=v;} ni b.(t+1) | Li(z2) = (vo,...,vn)@i,0<i<n

z1 : 7 := pffact(x2) Li{z1 := true} ni b.(i4+1)

z : 7 := pfand(y) Li{z := true} ni b.(i4+1)

[x1: 71,22 : T2] if T3 rOp T4 goto b’ | Li{x1 := true} edgep(b,b+1) | (b+1).0 | Li(z3) =43, L1(za) = 14, (i3 rop ia)

[z1: 71,22 : T2] if T3 rOp T4 goto b’ | Li{w2 := true} edgep (b, V') b'.0 Li(xz3) =3, L1(x4) = 14,13 rOp ig

goto b’ Ly edgep(b,b') b'.0

Figure 11. Operational semantics

dence, namely, bounds checking for arrays. In particular, we con- Informally, the key features of our language are the following.
sider a compiler with separate address arithmetic, load, and storeThe operatiorbase(z) takes an array and creates a pointer to the
operations, where the type system must ensure that a load or storelement at index zero. The arithmetic operations can be applied to
operation is applied only to valid pointers. Moreover, since the ba- such pointers and an integer to compute a pointer to a different in-
sic safety criteron for a store is the same as for a load, namely, thatdex. Theld(z1) [z2] operation loads the value pointed to by the
the pointer is valid, we consider only loads; adding stores to our pointer inz;. The variablers is a proof variable and conceptually
core language adds no interesting complications. Not considering contains a proof that; is a valid pointer: that is, that it points to an
stores further allows us to avoid modelling the heap explicitly, but in-bounds index. The typing rules ensure thais valid by requir-

to instead use a substitution semantics which greatly simplifies theing x» to contain an appropriate proof. The operatipfi$act(z)

presentation. andpfand(z) construct proofs. Fopffact(x) a proof of a for-
The syntax of our core language is given as follows: mula based on the definition af is constructed. For example, if
L x’s definition isz : int := len(y) thenpffact(z) constructs a
Prog. States S = (P L,n, pc) proof of z = len(y). A comple(te)definition of t(hg defining facts
Programs poou= B of instructions appears in Figure 14. Rgfand(z1, ..., z,), 21
Blocks B u= Pige _ throughz,, are also proof variables, and a proof of the conjunction
Philnstructions p == z:7:=¢(7) is returned. Values of the forrfvo, . .. , v,)@i represent pointers
Instructions ¢ AT =T to array elements: in this case a pointer to the element at index
Right-hand sides r n= | |newarray(zi, z2) | of an array of typgvy, ..., v,). Such a pointer is valid if is in

len(z) | base(z) |
1 bopxa | 1d(I1) [:L‘Q] |
pffact(z) | pfand(z)

bounds (that is, il < ¢ < n) and invalid otherwise. The typing
rules must ensure that only valid pointers are loaded from, with
proof variables used to provide evidence of validity. The final un-

Binary Ops bop = 4| - usual aspect of the language is that branches assign proofs to proof
Transfers ¢ = goton|halt| variables that reflect the condition being branched on. For exam-
[#1 : 71,22 - 2] 3f @3 TOP 24 ple, in the branchiz, : 71,z : 7] if z3=x4 goto n, a proof of
. goton x3 # x4 is assigned ta:; along the fall-through edge, and a proof
Relations rop = <|[<[=# of 23 = x4 is assigned ta:; along the taken edge. These proofs
Environments L == 7:=7v can then be used to discharge validity requirements for pointers.
Values v oou= 0| (9) | (0)@i] true To state the operational semantics and type system we need a
Prog. Counters pc = ni.no few definitions. The program counters of a prograns(P) are
Here i ranges over integer constanisranges over variables, {bi| P=DBo,...,Ban Ab<mABy, =Djt1; - jtn;c AN <
ranges over natural numbers, afds the phi-operation of SSA. n+1}. We write P(b) for B, whenP = By, ..., B, andb < n; if
We use the bar notation introduced in Featherweight Java B5]: P(b) = D;t1; - . . ; tm; cthenP(b.n) isp whenn = 0, and.,, when
abbreviatesBy, . .., B,, T := v abbreviatesy := v, ..., z, 1= 1 < n < mandcwhenn = m + 1. The edges of a prograif,

un, et cetera We also use the bar notation in type rules to ab- edges(P), are as follows. The entry edge(is 1, 0). If P(n) ends
breviate a sequence of typing judgements in the obvious way. in [z1 : 71,22 : 2] if 3 ropzs goto n' then there are edges
In addition to the grammar above, programs are subject to a (n,n+1), called the fall- through edge, ard, n'), called the taken

number of context-sensitive restrictions. In particular, then edge. IfP(n) ends ingoto n’ then there is an edge:, n'). For a
[x1: 71,22 72] if x3ropzs goto m andgoto n must be a glvenP andn; the edge$n1,n2) € edges(P) are numbered from
block number in the program (i.e., if the programfs, ..., B zero in the order given by ; edgep(n1,7n2) is this number, also

then0 < n < m); the transfer in the last block must be a goto called the incoming edge number (@fy, n2) into ns.

or halt; the number of variables in a phi instruction must equal the

number of incoming edges (as defined below) to the block in which Operational Semantics A program P is started in the state

it appears; the variables assigned in the phi instructions of a block (P, #,0,0.0). The reduction relation that maps one state to the
must be distinct. next is given in Figure 11. Note that the third component of a pro-

POPL '06 Submission 5 2005/11/15

gram state tracks which incoming edge led to the current program Judgement Meaning

counter—initially this is the entry edge-1, 0), and is updated by 'tn <m 71 iISasubtype ofz inT’
transfers. Itis used by phi instructions to select the correct variable. FF = F» | FyimpliesF;

The notationp[:] denotesr: := z1i,...,Tn = Tn; Whenp = I'kp p is safe in environmerit
1271 = AT, ooy Tim)s ooy T ¢ T 2= O(Tniy - oy Trm)- Tkp.e ¢ is safe in environmerif

A program terminates when in a state of the fof# L, n, pc) I'ke c is safe in environmerit
where P(pc) = halt. A program state is stuck if it is irreducible Fp7atdu 7 well-formed type atlu in P
and not a terminal state. Stuck states all represent type errors that Fp T environment well-formed in P
the type system should prevent. Note that the array creation opera- P P is safe

tion must handle negative sizes. Our implementation would throw

an exception, but since the core language does not have exceptions,

it simply creates a zero length array if a negative size is requested.
In the operational semantics, the proof type has the single in-

habitan_ttru_e, upon which no interesting _operations are qefined. The judgements of the type system are given in figure 12. Most
Proof§ in this sense are equwalgr_lt to unit values for wh_nch NON- of the typing rules are given in Figure 14. Typing environments
escaping occurrences can be trivially erased when moving 0 anp giate the types that variables are supposed to have. The rules
untyped setting. This “proof erasure” property is precisely analo- cneck that when assignments are made to a variable, the type of the
gous to the “coercion erasure” property of the coercion language of 4qqjgned value is compatible with the variable’s type. For example,
Vanderwaart et al. [23]. In practice, uses of proof variables in the o judgement - int < I'(z) in the rule forz : 7 := i checks

STARJIT compiler are restricted such that all proof terms can be yharintegers are compatible with the typerofThe rules also check
elided during code generation and consequently impoSe N0 OVer-4t yses of a variable have a type compatible with the operation.
head at run time. While we believe that it would be straightforward g, example, the rule for load expects a proof that the pointer

to formalize the syntactic restrictions that make this possible, we ;5 yalid. so the rule checks that’s type I'(z3) is a subtype of'

choose for the sake of simplicity to leave this informal here. PE (1 30< 0y Ay < c10n(ay) [OF SOMeEL. It is this check along with the

Type System The type system has two components: the SSA rules for proof value generation and the SSA property that ensure
property and a set of typing judgements. The SSA property ensuresthatzs is valid.
both that every variable is assigned to at most once in the program Given these remarks, the only other complicated rule is for phi
text (the single assignment property) and that all uses of variablesinstructions. In a loop a phi instruction might be used to combine
are dominated by definitions of those variables. In a conventional two indices, and the compiler might use another phi instruction to
type system, these properties are enforced by the typing rules. Incombine the proofs that these indices are in bounds. For example,
particular, the variables that are listed in the context of the typing consider this sequence:
judgement are the ones that are in scope. For SSA IRs, it is more @1 ¢ int := (a2, 3)
convenient to check these properties separately. . of N 217()

The type checker must ensure that during execution each use of 1= Phosan) © Y2, s
avariable is preceded by an assignment to that variable. Sin¢e the wherey: : pf<,,, andys : pf .. Here the types foy,
th variable of a phi instruction is used only if thxth incoming edge 2, andys are different and in some sense incompatible, but are
was used to get to the block, and the proof variables in an if transfer intuitively the correct types. The rule for phi instructions allows
are assigned only on particular out-going edges, we give a ratherthis typing. In checking thay, has a compatible type, the rule
technical definition of points at which variables are assigned or substitutes:, for z; in y1's type to gepsf), Whichis the type
used. These points are such that a definition point dominating a usethaty, has; similarly forys. -
pointimplies that assignment will always precede use. These points For a programP that satisfies the SSA property, every variable
are based on an unconventional notion of control-flow graph, to mentioned in the program has a unique definition point, and that
avoid critical edges which might complicate our presentation. For definition point is decorated with a type. Let(P) denote the
a programP with blocks0 to m, the control-flow graph consists environment formed from extracting these variable/type pairs. A
of the nodeg0, . .., m} Uedges(P) and edges from each original programpP is well formed(- P) if:
noden to each original edgén,n’) and similarly from(n,n’)

Figure 12. Typing judgements

to n’. The definition/use pointsju(P), are pcs(P) U {b.0.i | 1. P satisfies the SSA property,
P(b.0) =po,...,pn N0 < i <n}U{ei|ecedges(P)Aie 2. Fp vt(P),
{0,1}}. 3. vt(P) - pforeverypin P,

Figure 13 gives the formal definition of dominance, defini- 4 \t(P) 15 . for every instruction in P, and
tion/use points, and the' SSA property. 5. vt(P) - ¢ for every transfer: in P
The syntax of types is: ’ '

The type system is safe:

Types 7 u=int | array(7) | ptr,(7) | S(z) | P,
Facts Fi=eiropes | Fi A F> THEOREM1 (Type Safety).
FactExps. e =i |z |len(z) | e1 bopes | zQe If - Pand(P,(,0,0.0) —* S thenS is not stuck.

Environmentd” ::= : 7 A proof of this theorem is given in appendix A. The proof takes

The typeptr, (7) is given to pointers that, if valid, point to values the standard high-level form of showing preservation and progress
with type 7 (the ? indicates that they might not be valid). The lemmas, as well as some lemmas particular to an SSA language.
singleton types(z) is given to things that are equal ta The It is important to note that safety of the type system is contingent
type pf) is given to proof variables that contain a proof of the on the soundness of the decision procedure-fafy, — Fb.
fact F'. Facts include arithmetic comparisons and conjunction. Fact In the proof, a judgement corresponding to truth of facts in an
expressions include integers, variables, array lengths, arithmeticenvironment is given. In this setting, the assumption of logical
operations, and a subscript expression—the fact expressien soundness corresponds to the restriction that in any environment
stands for a pointer that points to the element at indekarray:. in which F; is true, F5 is also true.

POPL '06 Submission 6 2005/11/15

Defs and Uses:
If P(b.i) =z : 7 := r then program countér: definesz, furthermorep.i is a use of theys wherer has the following forms:

y | newarray(y1,y2) | len(y) | base(y) | y1 bopyz | 1d(y1) [y2] | pffact(y) | pfand(y)
If P(b.i) = (po,...,pn) andp; = xz; : 7; := ¢(y;1,-..,Y;m) thenb.i.j defines eack; andey.1 uses eacly;;, wheree, is thek-th incoming edge
of b. If P(b.i) = [z1 : 71,22 : 72] if y1 rop y2 goto n thene;.0 definesz; andes.0 defineszs wheree; andes are the fall-through and taken edges
respectively, and.: usesy; andys. If = has a unique definition/use pointinthat defines it, thedef p () is this point.

Dominance:

® |In programP, noden dominates node:, writtendom p (n, m), if every path in the control-flow graph @? from (—1, 0) to m includesn.
® In programP, definition/use poink1 .31 strictly dominates definition/use poink.iz, writtensdom p (n1.i1, n2.i2) if n1 = ng andi; < iz (herei; or
i might be a dotted paid.j, so we take this inequality to be lexicographical ordering) p£ n2 anddomp(ni, n2).

Single Assignment:
A program satisfies thgingle-assignment properifyevery variable is defined by at most one definition/use point in that program.

In Scope:
A program P satisfies theén-scope propertyf for every definition/use pointiu; that uses a variable there is a definition/use pdint that defines that
variable anddom p (duz, duy).

SSA:
A program satisfies th8ingle Static Assignment (SSA) propéfrtysatisfies the single-assignment and in-scope properties. Note that a program that satisfies
SSA has a unique definition for each variable mentioned in the program.

Figure 13. SSA definitions

’I—p'ratdu I—pF‘

fv(7) C inscope p(du) Fp T at defp(Z)

Fp 7atdu FpT:T
TFn<n FA = B
'Em <m 'Erm <m
T'F int < int '+ array(m) < array(72) [+ ptry(m1) < ptr,(r2)
P = 'k <m I'kmn<T13
'tk s(z) < s(z) T'Fs(z) <T'(x) I'Fpf gy <pf(p,) T'kFrm <73

The judgement- Fy — F5 is some appropriate decision procedure for our fact language.
C+p TFpe ke \

'+ S(mij) S F(zi){rl,‘..,zn = zlj,..‘,xnj}

Phzi:mi=¢(@11,- -, T1m)s -+ -3 @n 2 Tn = G(Tnl, - Tnm)
't int < T(x) I+ S(z2) < T'(z1) I'FT(z2) <int I'Farray(I(z3)) < I'(z1)
I'tpx:7:=1 T'kpxy:7:=22 I'tp x1 : 7 := newarray(z2, z3)
'k T(z2) < array(re) I'Fint <T'(z1) 't T(z2) < array(me) TI'Fptry(m) <I'(z1)
I'tp z:7:= len(z2) I'tp z1: 7 := base(z2)
I'-T(z2) <int I'FI(z3) <int I'Fint <T'(z1) I'FT(z2) <ptry(re) T'FD(xz3) <int Ik ptr,(r) <T'(z1)
I'kpx:7:=x9bopxs I'kpx:7:=xz9bopxs

P'ET(z2) < ptro(re) I'FT(23) < Pfcao<agres<c@len(z)) L F 72 < T(1)
I'tpz1:7:=1d(z2) [z3]
Db pf (geffact p (02)) S F(@1) THET(@1) <pf(py -+ TED(yn) <pfp,y) TEPEm A AR, <T(z1)
I'tp xq: 7 := pffact(z2) P'tpa:7:=pfand(y1,...,Yn)
[HT(2s) <int T T(za) int TFpEC (o mpasy < D@1) T FPE, opay) < Dle2)

Tk [z1: 71,22 : T2] if 23 rOp x4 goto n

I'-goton I' F halt

deffactp(x) | The factdeffact p (z) depends upon the defining instructiomoin P, and is given by these rules:

deffactp(x : 7 :=1) = z=t
deffactp(z : 7 := len(x')) = z=len(z’)
deffactp(z : 7 :=base(z’)) = z=2'Q0
deffactp(x : 7 := z1 bopxa) = ax=x1 bopzs

Figure 14. Typing rules

POPL '06 Submission 7 2005/11/15

The typing rules presented are for the most part syntax-directed,

and can be made algorithmic. A consideration is that the rule for :}B':lin;t ;:ﬁ’en(a)

load must determine the actual array variable, which is not apparent Loop :

from the conclusion. In general, the decision prodecure only needs iz : int =¢(i1,i3)

to verify that the rule holds for one of the arrays available at that (9 :PE(i,cug)s G2t -] = if UB<iz goto EXIT
program point. In practice, the correct array can be inferred by ex- aLen : int :=1en(a)

amining the type of the proof variable. We believe that judgements 03 : P (aLen=1en(a)) :=pffact(alen)

on facts may be efficiently decided by an integer linear program- A4 : Pf(o<iy) := checkLowerBound(iz, 0)

:=checkUpperBound(iz, aLen)
:=pfand(ds, d;)

ming tool such as the Omega Calculator [21] with two caveats.
First, such tools reason ové&r rather than 32- or 64-bit integers.

g5 : Pf(i2<aLen)
U6 : PE(i,<1en(a))

Second, they restrict our fact language for integer relations (and, aBase: ptr, (int) :=Dase(a)
thus, compiler reasoning) to affine expressions. This is, however, 07 : P (aBase=aq0) :=pffact(aBasg
sufficient to capture currentr8RJIT optimizations. addr : ptr,(int) :=aBaseriz

Os * Pf(qddr=aBasetis) :=pffact(addr)

::pfand(q77 Q8)
;:pfa_nd(Q4, J6» q9)

G : P (addr=aais)

4. Compiler optimizations _
G10 * Pf(a@o<addr. a@1en(a))

In this section we examine compiler optimizations in the context of val : int :=1d(addr) [d;,]
the core language. We demonstrate how an optimizing compiler can ceeten ==val

preserve both proof variables and their type information. We argue i3 :int i=ia+1

that our ideas greatly simplify this process. In previous work, an im- EXIT goto LOOP

plementer would need to modify each optimization to update safety
information. In our representation, we leverage existing compiler

infrastructure to do the bulk of the work. In particular, most control-
flow or data-flow optimizations require virtually no changes at all.
Others that incorporate algebraic properties only need to be modi-
fied to record the compiler’s reasoning. In the next section we will
discuss how these ideas can be extended from the core language to
full Java.

In general, there are two ways in which an optimization can
maintain the correctness of the proofs embedded in the program.
First, it can apply the transformation to both computation and proof
simultaneously. This is sufficient for the majority of optimizations.
Second, it can create new proofs for the facts provided by the
original computation. As we show below, this is necessary for
the few optimizations that infer new properties that affect safety.
In the rest of this section we show how these general principles
apply to individual compiler optimizations on a simple example.
For this example, we show how to generate a low-level intermediate
representation that contains safety information and how to preserve
this information through several compiler optimizations, such as
loop invariant code motion, common subexpression elimination,
array bounds check elimination, strength reduction of array element
pointer, and linear function test replacement.

The example we will consider, in pseudo code, is:

for (i=0; i<a.length; i++) {

Figure 15. Low-level representation for array load in loop

i1 :int

uB: int

O3 : Pf(uB=1en(a))

aBase: ptr,(int)

07 : Pf (aBase-a@0)
LOOP :

iy :int

[0 : PE(iy<up) 2 ¢ - =
s : PEo<iy)

G5 : PL(iy<up)

s : PE(i; <1en(a))

addr : ptr,(int)

Os : Pf(addr—aBasetis)

o * P (addr=a@i,)

O10 : Pf(a@o<addr- a@1en(a))
val : int

i3 :int

EXIT :

=0

:=1en(a)
:=pffact(uB)
:=base(a)
:=pffact(aBase

=¢(i1,13)

if uB<is goto EXIT
:=checkLowerBound(iz, 0)
:=checkUpperBound(iz, uB)
:=pfand(d, Js)
:=—aBasetio
:=pffact(addr)
:=pfand(dy, gg)
:=pfand(dy, dg, dy)
:=1d(addr) [0;0]

=wal

i=ig+1

goto LOOP

- =alil;
}

Where we assume thatis a non-null integer array, thatis not
modified in the loop, and that the pseudo code array subscripting

Figure 16. IR after CSE and loop invariant code motion

has an implicit bounds check. Although this example does not ableq,). The conjunction of these proofs is sufficient to type check
reflect the full complexity of Java, it is sufficient to illustrate the the load instruction according to the typing rules in Figure 14. The
main ideas of propagating safety information through the compiler proof variables are generated by the explicit array bounds checks
optimizations. Section 5 discusses additional issues in addressingwhich we use as syntactic sugar for the branches that transfer con-
full Java. trol to a halt instruction if the bounds check fails) andgfifact

The first compilation step for our example lowers the program andpfand statements that encode arithmetic properties of the ad-
into a low-level representation suitable for optimization, as shown dress computation as the types of proof variables.
in Figure 15. In our system, lowering generates instructions thatex- ~ Next, we take the example in Figure 15 through several common
press the computation and any required proofs of the computation’scompiler optimizations that are employed bya®JIT to generate
safety. For example, a typical compiler would expand an array ele- efficient code for loops iterating over arrays (Figures 16 - 19). The
ment accesa]i] into the following sequence: array bounds checks, resultis highly-optimized code with an embedded proof of program
computation of the array element address, and a potentially unsafesafety.
load from that address. In our system, the compiler also generates We start, in Figure 16, by applying several basic data-flow op-
proof variables that show that the array indeis within the ar- timizations such as CSE, dead code elimination, and loop invari-
ray bounds ¢, for the lower bound andj for the upper bound) ant code motion. An interesting property of these optimizations
and that the load accesses an elemaitthe arraya (proof vari- in our system is that they require no modification to preserve the

POPL '06 Submission 8 2005/11/15

i1 :int =0

O11 : PL(i,=0) :=pffact(ir)

uB: int :=1len(a)

O3 : Pf(uB=1en(a)) :=pffact(uB)

aBase: ptr,(int) :=base(a)

07 : P (aBase-a@o) :=pffact(aBase
LOOP :

iz :int =(i1,i3)

% ¢ PE(0<iy) =¢(011,03)

= if uB<ig goto EXIT
:=pfand(ds, d;)
:=aBasetia
:=pffact(addr)
:=pfand(d,, ds)
:=pfand(dy, dg, dg)

[0 : PEGi,cup)s Ot -
s * PE(iy<1en(a))
addr : ptr,(int)
Os * Pf(addr=aBasetis)
Q9 * P (addr=a@i,)
O10 * Pf(a@o<addr. a@1en(a))

val : int :=1d(addr) [g;)
AU :=wal
i3 :int =ig+1
12 PE(ig=ip41) :=pffact(iz)
O13 : Pf(o<iy) :=pfand(dy, ty2)
goto LOOP
EXIT :

Figure 17. IR after bound check elimination

safety proofs. They treat proof variables identically to other terms,

i1 :int

O11 : PL(i,=0)

uB: int

O3 : PE(uB=1en(a))

aBase: ptr,(int)

07 : P (aBase=a@0)

addr; : ptr,(int)

Q14 : Pf(addrlzaBaseHl)
LOOP :

i :int

Ay : PE(o<iy)

addry : ptr,(int)

Os : PE(addr,—aBasetis)

(0 : PE(icugy B2t --] =

6 * PL(i,<1len(a))

Qo * P (addr, =a@is)

O10 : Pf(a@o<addr. a@1en(a))

val : int

i3 :int

Qi2 * PE(iz=iy41)

addrs : ptr, (int)

O15 * P (addr—addrs +1)

O13 : Pf(o<iy)

Ui : Pf(addrgzaBasz-}ig,)

EXIT :

=0
:=pffact(i1)
:=1len(a)
:=pffact(uB)
:=base(a)
:=pffact(aBasg
:=aBaset
:=pffact(addr)

(i1,i3)
(G11,913)
(addr;, addrs)

=9
=9
=9
=&(U14, Uhg)

if uB<igp goto EXIT
:=pfand(ds, d;)
:=pfand(d,, dg)
:=pfand(qy, dg, dy)
:=1d(addrz) [q;(]
:=wval

=ig+1
:=pffact(is)
:=addrp+1
:=pffact(addr)
:=pfand(qy, d;2)

:=pfand(dg, 0;9, Uy 5)

goto LOOP

and, thus, are automatically applied to both the computation and
the proofs. For example, common subexpression elimination and
copy propagation replaaal occurrences cdlLenwith uB, includ-
ing those that occur in proof types. The type of the proof variable
g, is updated to match its new definitigfifact(uB).

In Figure 17, we illustrate array bounds check elimination. In

Figure 18. IR after strength reduction of element address

the literature [4], this optimization is typically formulated to re- UB: int :=1len(a)

move redundant bounds checks without leaving any trace of its rea- O3 * Pf(uB=1en(a)) :=pffact(uB)
soning in the program. In such an approach, a verifier must effec- aBase: ptr,(int) :=base(a)

tively repeat the optimization reasoning to prove program safety. In 97 : Pf (aBase=aao) :=pifact(aBasq
our system, an optimization cannot eliminate an instruction that de- addr; : ptr,(int) :=aBase

fines a proof variable without constructing a new definition for that %14 * PE (addr, =aBase :=pffact(addn)
variable or removing all uses of that variable. Intuitively, the com- addr.UIi: ptr: (int) fiafB:se:EjaderUB)
piler must record in a new definition its reasoning about why the Loqoll73 * P* (addruB=aBaset uB) TpRac

eliminated instruction was redundant. Consider the bounds checks

addr : ptr,(int) :=¢(addr, addrs)

in Figure 16. The lower bound check that verifies thati, is . of =)
L : . . - . 4y * PY (aBase<addr,) : Q14> %13

redundant becaude is a monotonically increasing variable with [0 PE agdr. —adarum» O © -] i= if addrUB<addr,

the initial value 0. Formally, the facts that=0, i2=¢(i1,i3) and (addr; <) goto EXIT

iz=i2+1 imply that0<i.. This reasoning is recorded in the trans-
formed program through a new definition of the proof variaple
and the additional proof variableg, andg, ;. We use SSA to con-

:=pfand(ds,d;,d;7)
:=pfand(Qy, ds, O7)
:=1d(addr) [g;]

U6 * PE (addr, <aBaser1en(a))

U10 * Pf(a@o<addr, <a@len(a))
val : int

nect these proofs at the program level. The upper bound check that ceet :=wal

verifies thatiz<len(a) (proof variablegs) is redundant because addrs : ptr, (int) :=addr+1
theif statement guarantees the same condition (proof varigiple G15 * Pf (addrs =addry +1) :=pffact(addrs)
Because the new proof for the fagt is already present in the pro- O13 * PE (aBasecaddrs) :=pfand(dy, d5)
gram, the compiler simply replaces all uses oggwith q; . goto LOOP

In Figure 18, we perform operator strength reduction (OSR) [9] EXIT:

to find a pointer that is an affine expression of a monotonically in-
creasing or decreasing loop index variable and to convert it into an
independent induction variable. In our example, OSR eliminiates
from the computation ofddr by incrementing it directly. Because
variableaddr is used in theyg := pffact(addr) statement, the
compiler cannot modify the definition @fddr without also mod-
ifying the definition ofqgg (otherwise, the transformed program
would not type check). Informally, the compiler must reestablish induction on that fact. Again, we leverage SSA to establish the new
the proof that the fact trivially provided by the original definition proof. In this caseqly : P aqqr, —aaseri,) IS defined by the phi in-
still holds. In our system, OSR is modified to construct a new proof struction that merges proof variablgs, : pf aqqr, —apaseti,) and

for the fact trivially implied by the original pointer definition by

Figure 19. IR after linear function test replacement

q16 : pf (addrs =aBasefig) "

POPL '06 Submission 9 2005/11/15

Finally, we illustrate linear function test replacement (LFTR) [9] to a record type for objects in the class, and they have coercions
in Figure 192 Classical LFTR replaces the tef<i. in the branch to convert between the two. These ideas could be adapted to our
by a new tesaddrUB<addr.. If our program contained no proof system instead of our vtable types, and our vtable types could be
variables, this would allow the otherwise unused base variable adapted to their type system. In summary, both systems are simpler
to be removed from the loop. We augment the usual LFTR pro- than existing, more foundational, object encodings. Theirs has type
cedure, which rewrites occurrences of the base induction variable variables and bounded existentials, ours has singleton types based
i2 in loop exit tests (and exits) in terms of the derived induction on term variables.
variableaddr,, to also rewrite occurrences of in the typesof Java and CLI also allow null as a value in any class type, and at
proof variables. Finally, to eliminate the original induction variable runtime this null value must be checked and an exception thrown
altogether, the compiler must replace the inductive proofs on the before any invocation or field access on an object. We can use our
original variable (expressed throughinstructions) with proofs in proof variable technique to track and ensure that these null checks
terms of the derived induction variable. In this case, the compiler are done. We simply add a null constant to the fact expression lan-

must replace the proof thakKi, (established by, , andg,,) with guage. We can add an operation likepf , ..., := chknull(z)
one that proves Base<addr, (established by, andq,;). Af- to check thatr is not null. If z is null then it throws an exception,
ter the replacement, the loop induction variablend any proof if not then it assigns a proof af£null to p. Similarly to array-

variables that depend upon it are no longer live in the loop, so all bounds check elimination, we can eliminate redundant null checks.
definitions of the variable can be removed. The compiler mustre- To handle exceptions we simply add explicit control flow for
move the proof variables whose types reduce to tautologies andthem. Each potentially exception throwing operation will end a ba-
apply further CSE to yield Figure 19. sic block and there will be edges coming out of the block corre-
sponding to exceptions that go to blocks corresponding to the ex-
5. Extensions ception handlers. An .important point is thaF exceptiong typically
occur before the assignment of the potentially exception throw-
Our core language can easily be extended to handle other interesting operation, so like the conditional branches of our core lan-
ing aspects of Java and CLI. In this section we describe several ofguage, we must treat the definition point as occuring on the fall-
these extensions. through edge rather than at the end of the basic block. So in both
Firstly, we can handle object-model lowering through the use g : 7 := chknull(y) andz : 7 := call(y)(7), the variablex is
of our singleton types. Consider an invoke virtual operation. It is assigned on the fall-through edge.
typically lowered into three operations: load the virtual dispatch We can easily deal with stores to pointers by adding a store
table (vtable), load the method pointer from the vtable, call the operation of the formst(z,y) [p] wherez holds the pointery
method pointer passing the object as an additional argument. Inthe value to store, ang a proof thatz is valid. The type rule for

our system, these operations would look like this: this operation is:
x : SomeClass :== - -- I'ET(z) <ptr,(r) I'FI(y) <7
t1: Vtable(m) = Vtable(w) N F(p) S pf(z@0<z/\z<z@len(z))
ts : (S(z),int) — int := method(foo : (int) — int, ;) —
t3 : int := call(t2)(z, 10) ['tp st(z,y) [p)

Modifying our formalisation and type soundness proof to accomo-
date stores would be straightforward.

Java and CLI have mutable covariant arrays, and thus require
array-store checks at runtime. In particular, when storing into an
array, the runtime must check that the object being stored is com-
patible with the runtime element type of the array (which could be
a subtype of the static element type). In our implementation we use
types of the formelem(x) to stand for the runtime element type of
arrayz. The load base operation aractually returns something of
typeptr,(elem(x)). The array-store check produces a proof value
that can be used to prove that some other variable hasiype)
and we have a coercion to use the proof value to change the vari-
able’s type. The end of a lowered array store would look something

Here the method oo (taking an integer and returning an integer)
is being invoked on variable. In the lowered code, variablg
gets the dependent typeable(z) meaning that it contains the
vtable from the object currently im. Variablet, gets the loaded
method pointer. From the typetable(z), the typing rules can
determine a precise function type for this method pointer, namely
(S(z), int) — int, where the first argument must beThe actual
callis the last operation, and here we pass an explicit argument.
Sincez has types(z), this operation type checks.

By using singleton types based on term variables, we achieve
a relatively simple type system and still avoid the well known
typing problems with the explicit “this” argument (see [12] and
references). The existing solutions to this typing problem have

much more complicated type systems, with one exception. Chen lIke this:

and Tarditi [7] have a similarly simple type system for a lowered IR x :array(C):=---

for class-based object-oriented languages. Like our system, theirs y:Ci=---

also has class names as types, and keeps around information about xx

the class hierarchy, fields, and methods. They also have existentials P1 P niinc@o<int<z@ien(a)) =
with subclass bounds (type variables can be bounded above by a P2 1 Py cren(a)) = chkst(z,y)

class, and range over any subclass of that class). They use these st(t, retype(y, p2)) [p1]

existentials to express the unknown runtime type of any given
object, and thus the type of the explicit “this” argument. They
also have a class representation function that maps class name

One technicality is worth noting. In order to avoid circularities

%etween the type system and the fact language, and to avoid making
the fact language’s decision procedure mutually dependent upon
the subtype checker, we restrict the types that can appear in a fact

1 Note that the code resulting from LFTR is not typable in our core lan- f the f . toth that d t ti ft
guage, since we do not allow conditional branches on pointers. Extending ofthe formz - 7 10 those that do not mention proor types. .
the language to handle this is straightforward, but requires a total ordering _quncaSIS are similar to store che_cks, and we Can t_reat themin
on pointer values which essentially requires moving to a heap-based seman2 Similar way. Achkcast(z : C') operation checks thatis in type

tics. Note though that the fact language does perasoningabout pointer C and returns a proof of this fact, otherwise it throws an exception.
comparison, as used in the previous examples. The actual subtype checks performed at runtime in our implementa-

POPL '06 Submission 10 2005/11/15

tion are generally done by the virtual machine itself, and the virtual branch or the construction of an unsafe memory address as illus-
machine is not type checked by the type system of our JIT. How- trated in Figure 7. On the other hand, we do not support their notion
ever, we do partially inline this operation to include some common of referential security: the property that a program must be safe by
fast cases, and to expose some parts to redundant elimination andonstruction.
CSE. For example, if a object is null then it is in any reference type ~ While most of the work on certified code focuses on the final
and can be stored into any reference array or downcast to any ref-machine code representation, there has been previous work on
erence type. Another example is comparing the vtable of an objectintermediate representations that allow verification of the memory
against the vtable of a specific class, if these are equal then that ob-safety of highly optimized machine level code. One of the major
ject is in that class. Such comparisons produce facts in our systemdifferences between the various approaches lies in the degree to
of the formz=null or vtable(z)=vtable(C). We can simply which safety information is made explicit.
add axioms to our fact language likex=null =— =z :C or On the side of less explicit information are the Speciald com-
F vtable(z)=vtable(C) = z:C. piler [8] and DTAL [26]. Both approaches record loop invariants,
but not explicit safety dependences. This makes verification harder
6. Implementation Status (all availa_lble invariar_ns must be _co_nsigjered by the decision pro-
))] cedure), interferes with more optimizations (such as loop peeling)
The current implementation of theT&RJIT compiler generates than our approach, and makes removing dead invariants much more
and maintains proof variables throughout its compilation process to difficult (because invariants never have explicit uses).
enable safe implementation of certain optimizations in the presence At the other end of the spectrum, there are other systems that not
of check elimination (to be described in a forthcoming paper). For only represent dependences explicitly as we do, but also record ex-
their Inltlally deSigned role in Optimizations, prOOf variables did not acﬂy Why the dependences |mp|y Safety for each instruction, using
require proof types: optimizations do not need to know the reason proofs, instead of relying on a decision procedure during checking,
an Optimization was safe, but Only its Safety dependences. As SUCh,aS in our system. The LTT system of Crary and Vanderwaart [10]
the current $SARJIT representation is similar to that described in gnd the TSCB system of Shao et al. [22], developed independently,
Section 2 with some of the extensions in Section 5. ~ both take this approach, albeit in the setting of a functional or
STARJIT implements all of the optimizations discussed in this mostly-functional language. Both systems are designed around the
paper as well as more described in [1]. We modified each opti- idea of incorporating a logic into a type theory, in order to combine
mization, if necessary, to correctly handle proof variables. Array the benefits of proof-carrying code [19] with the convenience of
bounds check elimination and operator strength reduction requireda type system. LTT and TSCB adopt the linear logical framework
the most significant modification, as described in Section 4. For || F and the Calculus of Inductive Constructions, respectively, as
partial inlining of virtual machine type checking functions, as de- their proof languages. Incorporating a proof system also gives them
scribed in Section 5, we updated the definition of proof variables to more flexibility, as they can express a variety of properties within a
established that a variable has the checked type. We also modifiecsingle framework.
method inlining to properly establish the type of inlined methods. The lack of explicit proofs in the representation forces us to
For each parameter of a method, we added a proof variable that esyse a decision procedure during typechecking. This limits us to
tablished that it had the correct type. When a method is compiled decidable properties, and may be less suited for certified code
independently, that proof variable is triViaIIy defined at the method app”cations where the added Comp|exi’[y of a decision procedure
entry (as parameter types to a method are guaranteed by the runin the verifier may be undesirable.
time environment). When the method is inlined, the Corresponding On the other hand, a system such as ours is much more suited
proof variables must be defined by the calling method instead. As to use in the internals of an optimizing compiler. For the limited
method call operations require proof variables for each parameteryse that we need proofs for—to verify the correctness of checks
in our system, this information is readily available. Most optimiza- which are eliminated by a real optimizing compiler—we can get
tions, hoyvevgr, did not require significant changes for the reasons away with a vastly simpler system, one that imposes much less of
outlined in this paper. - o ~aburden on the compiler than more syntactically heavy systems.
An early version of a type verifier which inferred proof types it- - Moreover, for applications of certified code, we believe that it
self was implemented. This implementation was particularly help- should be possible to take optimized intermediate code in the style
ful in finding bugs within SARJIT, but was insufficient for com- presented here and translate it, as part of code generation, to a
plete verification of optimized code. In particular, the inference al- more explicit form in the style of LTT or TSCB, thereby reaping
gorithm was insufficient for some more complicated optimization the benefits of both approaches, perhaps by following the Special
situations, such as the LFTR example (without proof type informa- j model of using a proof generating theorem prover. However, this
tion) in Section 4. We are confident that extending the compiler to remains future work.
use precise proof types for proof variables will be straightforward, Finally, our proof variables are also similar to the Jafapaava
using the framework developed in this paper. system’s condition registers as described in [6, 14]. Both are mech-
anisms to represent control-flow information as abstract value de-

7. Related Work pendences. Their usage, however, is more limited. Condition regis-

As far as we are aware, SafeTSA [24, 2] is the only other example
of a type-safe SSA representation in the literature. The motivation
of their work is rather different than ours. SafeTSA was designed

as an alternative to Java bytecode, whereas our representation is der
signed to be a low-level intermediate language for a bytecode com-,
piler. SafeTSA can represent certain optimizations, such as CSE

and limited check elimination, that Java bytecode does not. How-
ever, in our classification in Section 2, SafeTSA is a refinement-
style representation and, thus, cannot represent the effect of man
of the low-level optimizations we discuss here. For example, it can-

ters are not used to express general safety information or to support
verification of code. Instead, they are used by the compiler to model
control flow between a check operation and all (rather than just po-
tentially unsafe) instructions that follow it. Jaldpeuses condition
‘egisters to collapse control flow due to exceptions into a single ex-
ended block and, in that block, to prevent instruction reordering

that would violate control flow dependences.

98. Conclusions

This paper has shown a typed low-level program representation

not represent the safety of check elimination based upon a previousthat preserves memory safety dependences in highly-optimizing

POPL '06 Submission

11 2005/11/15

type-preserving compilers. Our representation encodes safety de-[13] GRossMAN, D., AND MORRISETT, J. G. Scalable certification

pendences as first-class term-level proof variables that capture the
essential memory-safety dependences in the program without artifi-

cially constraining optimizations—previous approaches that piggy-

back safety dependence on top of value dependence inhibit opti-
mization opportunities. Our representation encodes proofs of mem-
ory safety as dependent types associated with proof variables. Ex-

perience implementing this representation in thamsJIT com-
piler has demonstrated that a highly-optimizing Java JIT compiler

can easily generate and maintain this representation in the pres-
ence of aggressive SSA-based optimizations such as bounds check

elimination, value numbering, strength reduction, linear function

test replacement, and others. Using explicit proof values and proof [16]
types, modern optimizing compilers for type-safe languages can
now generate provably safe yet low-level intermediate representa-

tions without constraining optimizations.

References

[1] ADL-TABATABAI, A.-R., BHARADWAJ, J., CHEN, D.-Y., GHU-
LouMm, A., MENON, V. S., MURPHY, B. R., SERRANO, M., AND
SHPEISMAN, T. The StarJIT compiler: A dynamic compiler for man-
aged runtime environmenttntel Technology Journal, 71 (February
2003).

[2] AMME, W., DALTON, N., VON RONNE, J., AND FRANZ, M.
SafeTSA: a type safe and referentially secure mobile-code repre-
sentation based on static single assignment fornPréiceedings of
the ACM SIGPLAN 2001 conference on Programming language de-
sign and implementatio(Snowbird, UT, USA, 2001), pp. 137-147.

BILARDI, G.,AND PINGALI, K. Algorithms for computing the static
single assignment forml. ACM 5Q 3 (2003), 375-425.

Bobik, R., GUPTA, R., AND SARKAR, V. ABCD: Eliminating
array bounds checks on demand. Rmoceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation(Vancouver, British Columbia, Canada, 2000),

pp. 321-333.

BRIGGS, P., GOPER K. D., AND SIMPSON, L. T. Value
numbering. Software—Practice and Experience, &7/(June 1996),
701-724.

CHAMBERS, C., FECHTCHANSKI, |., SARKAR, V., SERRANO,

M. J., AND SRINIVASAN, H. Dependence analysis for Java. In
Proceedings of the 12th International Workshop on Languages and
Compilers for Parallel Computin1999), vol. 1863 of.ecture Notes

in Computer Sciencep. 35-52.

CHEN, J.,AND TARDITI, D. A simple typed intermediate language
for object-oriented languages. Rroceedings of the 32nd Annual
ACM Symposium on Principles of Programming Languggesg
Beach, CA, USA, Jan. 2005), ACM Press, pp. 38—49.

CoLBy, C., LEE, P., NECULA, G. C., B.AU, F., RLESKO, M., AND
CLINE, K. A certifying compiler for Java. I°LDI '00: Proceedings

of the ACM SIGPLAN 2000 conference on Programming language
design and implementatidiew York, NY, USA, 2000), ACM Press,
pp. 95-107.

CooPER K. D., SMPSON, L. T., AND VICK, C. A. Operator
strength reductionACM Transactions on Programming Languages
and Systems (TOPLAS),Z3(September 2001), 603—625.

[10] CRARY, K., AND VANDERWAART, J. An expressive, scalable type
theory for certified code. IACM SIGPLAN International Conference
on Functional ProgrammingPittsburgh, PA, 2002), pp. 191-205.

[11] CYTRON, R., FERRANTE, J., ROSEN, B., WEGMAN, M., AND
ZADECK, K. An efficient method of computing static single
assignment form. IProceedings of the Sixteenth Annual ACM
Symposium on the Principles of Programming Langud@esstin,
TX, Jan. 1989).

[12] GLEw, N. An efficient class and object encoding. Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languag@dinneapolis, MN, USA, Oct. 2000), ACM
Press, pp. 311-324.

[3

—

[4

[l

5

—_

[6

—

(7]

8

—_

[9

—

POPL '06 Submission

for typed assembly language. THC '00: Selected papers from the
Third International Workshop on Types in Compilatidondon, UK,
2001), Springer-Verlag, pp. 117-146.

GUPTA, M., CHol, J.-D.,AND HIND, M. Optimizing Java programs

in the presence of exceptions. Pmoceedings of the 14th European
Conference on Object-Oriented Programming - ECOOP '00 (Lecture
Notes in Computer Science, Vol. 18%@)ne 2000), Springer-Verlag,
pp. 422-446.

IGARASHI, A., PIERCE, B., AND WADLER, P. Featherweight Java:
A minimal core calculus for Java and GACM Transactions on
Programming Languages and Systems (TOPLAS3ZBlay 2001),
396-560. First appeared in OOPSLA, 1999.

KNOOR J., RITHING, O., AND STEFFEN, B. Lazy code motion.

In Proceedings of the SIGPLAN '92 Conference on Programming
Language Design and Implementati@®an Francisco, CA, June
1992).

MORRISETT, G., CRARY, K., GLEwW, N., GROSSMAN, D.,
SAMUELS, R., SVITH, F., WALKER, D., WEIRICH, S., AND
ZDANCEWIC, S. TALx86: A realistic typed assembly language. In
Second ACM SIGPLAN Workshop on Compiler Support for System
Software(Atlanta, Georgia, 1999), pp. 25-35. Published as INRIA
Technical Report 0288, March, 1999.

MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. From
System F to typed assembly languag&CM Transactions on
Programming Languages and Systems (TOPLAS3ZMay 1999),
528—5609.

[19] NECULA, G. Proof-carrying code. IROPL1997(New York, New
York, January 1997), ACM Press, pp. 106-119.

[20] NECULA, G. C.,AND LEE, P. The design and implementation
of a certifying compiler. InPLDI '98: Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementatior{New York, NY, USA, 1998), ACM Press, pp. 333—
344.

[21] PuGH, W. The Omega test: A fast and practical integer programming
algorithm for dependence analysis. Rroceedings of Supercomput-
ing '91 (Albuquerque, NM, Nov. 1991).

SHAO, Z., SAHA, B., TRIFONOV, V., AND PAPASPYROU, N. A

type system for certified binaries. Rroceedings of the 29th Annual

ACM Symposium on Principles of Programming Langugdasuary

2002), ACM Press, pp. 216-232.

VANDERWAART, J. C., DREYER, D. R., FETERSEN L., CRARY,

K., AND HARPER, R. Typed compilation of recursive datatypes.

In Proceedings of the TLDI 2003: ACM SIGPLAN International

Workshop on Types in Language Design and Implementéiew

Orleans, LA, January 2003), pp. 98-108.

VON RONNE, J., RRANZ, M., DALTON, N., AND AMME, W.

Compile time elimination of null- and bounds-checks. 3m

Workshop on Feedback-Directed and Dynamic Optimization (FDDO-

3) (December 2000).

[25] WALKER, D., CRARY, K., AND MORISETT, G. Typed memory man-
agement via static capabilitieACM Transactions on Programming
Languages and Systems (TOPLAS)£2@uly 2000), 701-771.

[26] X1, H., AND HARPER, R. Dependently typed assembly language.
In International Conference on Functional Programmi{8gptember
2001), pp. 169-180.

(14]

(15]

(17]

(18]

(22]

(23]

(24]

12 2005/11/15

I'tpv:7inLatdu Lbtpeisvatdu Lbtp F atdu

z € dom(L) x € inscope p(du) F'tpv:7in L at du
IPtp L(z) : S(z) in L at du I'Fpi:int in L at du I'tp (U) : array(7) in L at du

I'Fpv:7in L at du Ltp F atdu I'Fpv:minLatdu ThHFn <7
I'Fp (0)Qi : ptr,(7) in L at du T'kp true : pf in L at du Tkpov:min L at du
z € dom(L) =z € inscopep(du) LEpxis(vo,...,vn—1) at du
Lbpazis L(z) at du Ltplen(z)isnat du

LEpeiisiiatdu LEpesisisatdu
LEpiisiatdu L Fp ei1bopes is 11 bop iz at du

Lbtpeiisiyatdu Lbpesisv@Qisat du Lbperlisv@iyatdu Lbpesisioatdu
L Fp erbopes is vQ(i1 bop iz) at du L Fp eibopes is vQ(i1 bop iz) at du

Lbtpzis(W)atdu LbEpeisiatdu
Ltp zQeis (0)Qi at du

LEperis{(vo,...,vn)Qi1 at du Ltpesis{vo,...,vn)Qizat du i1 T0p iz

L Fp eiropes at du

LEpejisiiatdu Lbpesisicatdu i1 ropis LFp Fiatdu LFp Fsatdu
L Fp eiropes at du LEp F1 NFsat du

F'kp L:T'QV F S

Ve € V:Ttp L(z) : T'(x) in L at defp(z)
I'p L:T'QV
FP w(P)=T
I'kp L :TQdfndAtp(pe,n)
n is an in-edge number férwherepc = b.i
pe € pes(P)
Va € dfndAtp(pe,n) if deffactp(z) = F thenL p F at pc

l_ (P7 L7 n7pc)

Figure 20. Typing for States, Environments, Values, and Facts

A. Appendix: Proof of Type Safety
A.1 Preliminaries
AsSsUMPTION1 (Logical Soundness)f L -p Fi at duand- Fy = FythenL Fp F5 at du.

Note that ifdomp(n1, n2) anddomp(n2, n1) thenn; = na. Hence strict dominance is asymetric. Thus dominance and strict dominance
induce a partial order that we can think of as a dominance tree roofed a) and(—1, 0).0 respectively.

Let inscope p(du) = {x | sdomp(defp(z),du)}. The latter set is the variables we know are defined at the beginning of an instruction
(if du is the program counter). However, at the beginning of the phi instructions we also need variables in scope on the incoming edge to b
defined. Therefore, we defirkfndAt (0.0, e) to beinscope p(e.1), dfndAt p(b.(i + 1), €) to beinscope p (b.(2 + 1)), anddfndAt p(b.i, n)
to bedfndAt ,(b.i, e) wheree is then-th incoming edge té.

The typing for states, environments, values, and facts appears in Figure 20.

A.2 Auxiliary lemmas
LEMMA 1. If L1 (z) = Lo(z) for all z € inscope p(du) andsdomp (du, du’) or du = du’ then:

elfTFpov:Tinli atduthenT' Fpv: T in Lo at du'.
elf LiFp FatduthenLs Fp F at du'.

Proof: The proof is by induction on the typing derivation. In the case of the singleton value rule and the rule for the value of an expression
that is a variable, the variable in question has to be in scopéfoso L; and L, agree on its value and the variable is in scopeffidr =

COROLLARY 1 (Environment weakening).

o If LFpeisve at duandz ¢ inscopep(du) and thenL{z := v} Fp eis ve at du
o If LFp F at duandx ¢ inscopep(du) thenL{z := v} bp F at du

Proof: Follows immediately from lemma 1. [

POPL '06 Submission 13 2005/11/15

LEMMA 2. If T Fp Ly : T'Qinscopep(du), T ¢ inscopep(du), Ly = L1{T:=v} andl’ Fp T : I'(T) in Lo at defp(T) then
I'Fp Lo : I'Qinscope p(du) U {T}.

Proof: The result follows by the typing rule i Fp Lao(z) : I'(z) in Lo at defp(z) for x € inscopep(du) U {Z}. For z in the

latter, the judgement holds by hypothesis. kan the former, note thainscope p(defp(x)) C inscope p(du), S0 L1(y) = L2(y) for all

y € inscope p(defp(x)) and clearlyL, (z) = L2 (z). Thus the judgement holds by hypothesis and Lemma 1. L]
Note that subtyping is reflexive and transitive.

LEMMA 3 (Subtyping Inversion).

o IfI' 7 < S(x) thent = S(y) for somey.

o If '+ S(z) < rtheneitherr = S(z)orT' FI'(z) < 7.

o If 't array(m) < array(me) thenT' F 1 < 7.

o IfT'F ptr,(r1) < ptr,(72) thenT' 7 < 7o.

IfI' pf(Fl) < pf(FQ) then I, — I5.

The following are not derivablel’ & int < array(r), I' b int < ptr(r), I' & nt < S(z), T' b dnt < pfip,
Ik array(t) < int, T' = array(r) < ptr(7'), T array(r) < S(z), T' = array(r) < pfipy, I' F ptr(r) < int,
I' F ptry(r) < array(r’), T F ptr,(r) < S(z), T F ptr,(r) < pfry I pfpy < int, 'k pfpy < array(r),
L'Epfipy < ptry(r), andl' F pf py < S(2).

Proof: The proof is by induction on the derivation of the subtyping judgement. The result is clear for all the rules except the transitivity rule.
There is some intermediate typethat is a supertype of the left type we are considering and a subtype of the right type we are considering.
For the first itemg is a subtype of(z) so by the induction hypothesis,= S(z) for somez. Sinceo is a supertype of, by the induction
hypothesisy = S(y) for somey, as required. For the second itesnis a supertype of (z), so by the induction hypothesis eitehe= S(z)

orT" - I'(x) < o. In the first case, the result follows by the induction hypothesis on the other judgement. In the second case, the resull
follows by transitivity of subtyping. For the third item, sineeis a supertype of an array type, by the induction hypothesisust be an

array type, sayrray(c’). Then by the induction hypothesis for both judgements; 7 < ¢’ andT F ¢’ < 7. By transitivity of
subtyping,I’ - 71 < 72 as required. The fourth and fifth items are similar (the fifth requires transitivity of implication in the logic). For the
sixth item, consider the cases. If the left typeiis, an array type, a pointer type, or a proof type, then by the induction hypothesist be

of the same form, so by the induction hypothesis again, the right type must have the same form. These are all the cases we need to consi
for the sixth item. [

LEMMA 4 (Canonical Forms)lf I' -p L : TQV, z € V, andinscope »(y) C V fory € V then:
IfT+ S(z) < S(a') andz’ € V thenL(z) = L(z').

IfT'FT'(x) < int thenL(x) is an integer.

o If '+ T'(z) < array(r) thenL(x) has the formw) andl' Fp T : 7 in L at defp(z).

o IfT'FT'(z) < ptr,(r) thenL(z) has the formv)@Qi andIl’ Fp v : T in L at defp(x).

e If ' - I(z) < pf(F)thenL Fp F at defp(z).

Proof: For the firstitem, if the hypothesis holds then by Subtype Inversion esther= S(z’) orT' I T'(z) < S(z'). For the formerg = 2’
and the conclusion therefore holds. Thus we need only show the first item for the stronger hypoth&sis tHat) < S(z’) andz’ € V.
The proof is by induction on the depth ofin the dominance tree. Sinaec V, by the typing rulel’ Fp L(z) : I'(z) in L at defp(z).
This judgement can be derived by a non-subsumption rule followed by zero or more uses of the subsumption rule. Since subtyping is reflexiv
and transitive, the zero or multiple uses of subsumption can be transformed into exactly one use. Consider the non-subsumption rule used

Singleton Value Rule: In this case,L(zx) = L(z"), " € dom(L), 2" € inscopep(defp(x)), andT + S(z”) < T'(z). Since
2’ € inscopep(defp(z)), ' € V andz” is less deep in the dominance tree tharBy the induction hypothesis, the result holds
for x = z”, we just need to show that it holds fat If the hypothesis of the first item hold¥ (- I'(z) < S(z') andz’ € V),
then by transitivityl' - S(z”) < S(z'), so by the induction hypothesig,(z”) = L(z'). ThusL(z) = L(x’) as required. If the
hypothesis of the third item hold& ¢ I'(x) < array(r)), then by Subtyping Inversion dnt S(z") < I'(z) eitherS(z"") = I'(z) or
'+ T(2") < I'(x). For the former, we have - S(z”) < array(r), so by Subtyping InversioRi + T'(z") < array(r). For the latter,
the last judgement holds by transitivity. Then by the induction hypotHggi&) has the formw) andT' p o : 7 in L at defp(z”). By
Lemmall' Fp ©: 7 in L at defp(z), as required. The cases for the second and fourth items are similar to the case for the third item.
If the hypothesis for the fifth item holds then by similar reasoning to the third ifem,I'(z”) < pf(F). By the induction hypothesis,
Ltp F at defp(z”). By Lemma l,L p F at defp(z), as required.

Integer Rule: In this caseL(z) = i for somei andI’ F int < I'(z). The second item clearly holds. If the hypothesis of the other items
held then by transitivity of subtyping,nt would be a subtype of a singleton, array, pointer, or proof type, which is not possible by
Subtyping Inversion.

Array Rule: In this caseL(z) = (¥), ' bp T : 7 in L at defp(z), andT’ F array(r) < I'(x). If the hypothesis of the third item,
namelyI" - I'(x) < array(o), holds then by transitivity of subtyping and Subtyping Inversibrt; = < o. Then by subsumption
I'tpv:o0in L at defp(x) as required by the conclusion of item three. If the hypothesis of the other items held then by transitivity of
subtyping,array(7) would be a subtype of a singleton, integer, pointer, or proof type, which is not possible by Subtyping Inversion.

Pointer Rule: In this caseL(z) = (7)@Qi,I" Fp © : 7 in L at defp(z), andT’ - ptr,(r) < I'(z). If the hypothesis of the fourth
item, namelyI" - I'(z) < ptr,(o), holds then by transitivity of subtyping and Subtyping Inversibt; 7 < . Then by subsumption

POPL '06 Submission 14 2005/11/15

I'kpv:oin L at defp(z) as required by the conclusion of item four. If the hypothesis of the other items held then by transitivity of
subtyping ptr, (7) would be a subtype of a singleton, integer, array, or proof type, which is not possible by Subtyping Inversion.
Proof Rule: Inthis caseL Fp F' at defp(z) andl" p£(F’) < I'(z). If the hypothesis of the fifth item, namier T'(z) < Pf . held,

then by transitivity of subtyping and Subtyping Inversienf’ = F. Then by Logical SoundnesE,+p F at defp(z), as required
by the conclusion to item five. If the hypothesis of the other items held then by transitivity of subtppjpg, would be a subtype of a
singleton, integer, array, or pointer type, which is not possible by Subtyping Inversion.

LEMMA 5. For anyb a block number fo? andn an incoming edge number &0 inscope p(b.1) C dfndAt p(b.i,n).

Proof: If i > 0 then the result holds by definition. Otherwise (&t,b) be then-th incoming edge td. Then dfndAtp(b.i,n) =
inscope p((b',1).1). Let N be the parent ob in the dominance tree faP. If N is not equal to or an ancestor @f, b) then there exists a
path from(—1, 0) to (¢, b) that does not includ&/’. We can extend this path with the edge fr@sh b) to b to obtain a path froni—1,0) to b
that does not includ@’ contradicting the fact thaV is b's parent in the dominance tree. Let inscope (b.0) thensdom p (defp (z), b.0).
Letdefp(z) = b”.i thendomp (b, N), sodomp(b”, (V',b)). Since(d’, b).1 does not define any variablesiom p (defp (), (b',b).1) and
x € inscope p((b',b).1), as required.]

LEMMA 6 (Canonical Forms 2)If I' +p L : T'Qinscope p(du) andl Fp v : 7 in L at du then:

o If 7 = intthenv = .

o If 7 = array(c) thenv = (T) andl' Fp U : 0 in L at du.
o If 7 = ptr, (o) thenv = (v)@iandl' -p T : 0 in L at du.
o If 7 = S(x) thenv = L(z) andz € inscope p(du).

o If 7 = pfp thenv = trueandL bp F' at du.

Proof: The proof is by induction on the depth éf: is the dominance tree. The judgemé&nit» v : 7 in L at du can only be derived by
a nonsubsumption rule following by zero or more uses of the subsumption rule. Since subtyping is reflexive and transitive, we can turn thes
uses of subsumption into exactly one use. Consider the nonsubsumption rule used:

Singleton Rule: In this case = L(x), z € inscope p(du), andl’ F S(z) < 7. If 7 = S(z) then the result holds. Otherwise, by Subtyping
InversionI” - I'(z) < 7. By hypothesisT' Fp v : I'(z) in L at defp(x). By subsumption]" Fp v : 7 in L at defp(z). Since
x € inscopep(du), defp(x) € inscopep(du), sosdomp(defp(x),du). Thusdefp(zx) is higher in the dominance tree thdn. The
result follows by the induction hypothesis.

Integer Rule: In this casev is some: and by Subtyping Inversion must beint, as required.

Array Rule: Inthis casevis (v), ' Fp U : 71 in L at du, andl' I array(m1) < 7. By Subtyping Inversionr must bearray(72) and
T'F 71 < 7. By subsumption' -p ¥ : 7% in L at du, as required.

Pointer Rule: In this case is ARRAY©Q¢, ' Fp ¥ : 71 in L at du, andl’ - ptr,(m;) < 7. By Subtyping Inversionr must beptr, (m2)
andIl' + 71 < 7». By subsumptionI' Fp T : 72 in L at du, as required.

Proof Rule: Inthis casev is true, L -p F1 at du, andl" - pf < 7. By Subtyping Inversiom must bept) and- Fy = F. By
Logical Soundnesg +p F> at du, as required.

LEMMA 7. If T Fp L : T'Qinscope p(du) then:

o Ifp 7 atdefp(z)andl Fp v : 7{T1 := T2} in L at duthenl' bp v : 7 in L{Z1 := L(T2)} at defp(z).
o Ifbp F at defp(z) andL bFp F{Z1 := T2} at duthenL{z, := L(T2)} Fp F at defp(z).
o If-p e at defp(z) andL Fp e{Z1 := T2} is v at duthenL{T1 := L(Z2)} Fp eis v at defp(x)

Proof: Letp = 71 := Tz andL’ = L{Z: := L(Z2)}. The proof is by induction of the structure of F', or e. Consider the different forms
thatr, F', or e could take:

7 = int: In this casey = 7{p}, so the hypothesis and Canonical Forms 2 imply that i. The conclusion then follows by the integer
rule.

7 = array(o): Inthis caser{p} = array(c{p}), so by hypothesis and Canonical Form®2: (v) andl' Fp ¥ : o{p} in L at du, by
the induction hypothesi§, -p v : 0 in L' at defp(z), so by the array rule the conclusion holds.

T = ptr,(o): Inthis caser{p} = ptr,(c{p}), so by hypothesis and Canonical Forms 2; (v)@Qi andl' Fp T : o{p} in L at du. By
the induction hypothesi§, -p v : 0 in L' at defp(z), so by the pointer rule the conclusion holds.

7= S(z): Let y be p(z). Thent{p} = S(y) and by hypothesis and Canonical Formsv2,= L(y). Sincetp 7 at defp(z),
z € inscope p(defp(z)). Clearly L’ (2) = L(y) andz € dom(L’). Thus by the singleton vlaue rulg,-p v : S(z) in L’ at defp(x),
as required.

7 =pf ! Inthis caser{p} = pf ;(,) SO by hypothesis and Canonical Forms 2z true andL p F'{p} at du. By the induction
hypothesisL’ -p F at defp(z), and the conclusion holds by the proof value rule.

F = e ropes: In this case F{p} = e1{p} rop e2{p}. Since the hypothesis can be derived by only two rules, it must be the case that
Ltpei{p}isvi at du, L Fp ea{p} is v2 at du, v1 andv, have the formsg, andi, or the forms(v)@i, and (v)@Qiz, andiy rop is.

POPL '06 Submission 15 2005/11/15

By the induction hypothesid,’ Fp e; is v1 at defp(x) andL’ p e is v2 at defp(x). The conclusion follows by applying the same
rule.

F = F1 A F»: In this case,F'{p} = Fi{p} N F>{p}. Since the hypothesis can be derived in only one way;» Fi{p} at du and
L +p F2{p} at du. By the induction hypothesid,’ -p F; at defp(x) andL’ Fp F; at defp(x). The conclusion follows the the and
rule.

e = i: Inthis case the conclusion follows by the integer rule.

e = z: Let y be p(z). Thene{p} = y. The hypothesis can be derived in only one waywse= L(y). Clearly, L'(z) = L(y) and
z € dom(L'). Sincet-p e at defp(z), 2 € inscopep(defp(z)). Thus by the expression variable rul, -p z is v at defp(x),
as required.

e = len(z): Lety bep(z). Thene{p} = len(y). The hypothesis can be derived in only one wayl.sop y is (vo,...,vn—1) at du and
v = n. By the induction hypothesid, -p z is (vo, ..., vn—1) at defp(z). The conclusion follows by the length rule.

e = e1 bopes: In this casee{p} = ei{p} bope2{p}. Since the hypothesis can be derived in only one Way;p e {p} is i1 at du,

L Fp ex{p} is iz at du, andv = i bop i>. By the induction hypothesid,’ -p e; is i1 at defp(x) andL’ Fp es is i2 at defp(z).
The conclusion follows by the binary operation rule.

e = 2@e": Let y be p(z). Thene{p} = y@e'{p}. The hypothesis can be derived in only one way,Iso-p y is (v) at du,

L Fp e'{p} isi at du, andv = (v)@i. By the induction hypothesid,’ Fp z is (v) at defp(z) andL’ p €’ is i at defp(x). The
conclusion follows by the pointer rule.

]
A.3 Preservation
LEMMA 8. If - P theni- (P, 0,0,0.0).
Proof: Straightforward given thadfndAt (0.0, 0) = 0. (]

LEMMA 9 (Preservation)If - S, andS; — Sz thenk Ss.

Proof: Assume that (P, L1,e1,b.7) and(P, L1, e1,b.i) — (P, L2, e2, pc). LetT’ = vt(P).
By the typing rule for programs:

FP

. }—p L1 : F@dfndAtP(b.i, 61)

. e1 is a valid in-edge number fdr

. b.i € pes(P)

.V € dfndAt (b3, e1) if deffactp(z) = F'thenL; Fp F at b.i

If P(b.i) =corP(b.i) = pthenpc = b.(i+ 1) € pcs(P) andes = e; SOey is a valid in-edge number fare’s block. We will show that
validity of pc ande, for transfers in the respective rules below. Thus it remains to show that:

1.Tkp Lo : TQdfndAt p(pe, e2)
2.Vx € dfndAtp(pc, e2) if deffactp(z) = F thenLs Fp F at pe

For all instructions for whichleffact p () is not defined, note that (2) follows immediately by lemma 1, since the set of defined facts remains
unchanged. For instructions for whidkffactp(x) = F, it suffices to show thak, Fp F at pe.
The proof proceeds by case analysis on the reduction rule.

Phirule: In this case,P(b.i) = P, ple1] = T1 = T2, and Ly = L:i{7: := L,1(Z2)}. By the definitions,dfndAtp(pc,e2) =
inscope p(pc) = inscopep(b.i) U {Z1}. By Lemma 5,inscopep(b.i) C dfndAtp(b.i,e1). Clearly by the typing rules antl +p
L, : TQdfndAtp(b.i,e1), I Fp Ly : TQinscope p(b.7). So by Lemma 2, we just need to show that p L1 (Z2) : I'(Z1) in L2 at
defp(Z1) (note thatp instructions define no facts).

Let (&', b) be thee;’th incoming edge td. Since the phi instructions are useswmfat (o', b).1, defp(T2) C inscopep((b',b).1) =
dfndAt 5 (b.i,e1). By Env Typing,Zo C dom(L1). Thus by the singleton typing rul&, -p Li(Z2) : S(T2) in L1 at (¥',b).1. By
the typing rules for phi-instruction$; - S(z2) < I'(Z1){p} wherep isZ, := T2. Thus by subsumptiod; Fp L, (Z2) : I'(Z1){p} in
Li at (¥',b).1. By the typing rulesi-p T'(Z1) at defp(Z1). So by Lemma 7T Fp L1 (T2) : ['(T1) in Lo at defp(T1).

Constant rule: In this caseP(b.i) = := ¢ andL, = Li{z := i}. Also note thatleffactp(z) = (z = 7).

By expansion of the definitions:
defp(l‘) =b.q
dfndAt p(pc, e2) = dfndAt p(b.i,e1) U {z}
x ¢ dfndAtp(b.i,er)

First we must show that:
LaobFpxz=1iatpc

By the environment rule (sinckz (z) = 4):
Lo bFp xistat pc

By the integer rule:
LobFpiisiat pe

So by the comparison rule:
Lobpxz=iatpc

ObhwWN P

POPL '06 Submission 16 2005/11/15

By Lemma 2, it suffices to show thatkp i : I'(z) in Lo at b.i.
By assumption:
I'ktpax:7:=1
So by inversion:
I'Fint < T'(z)
So by construction using the integer rule and subsumption:
IT'kpi:T(x)in Lo at b
Copy rule: In this case,P(b.i) = =1 := x2 and Lo = Li{z1 := Li(x2)}. By expansion of the definitionslefp(z1) = b.i,
dfndAtp(pc,e2) = dfndAtp(b.i,er) U {z1}, andzy ¢ dfndAtp(b.i,e1). By Lemma 2, we need to show thBtkp Li(z2) :
I(z1) in Lo at b.i. The typing rule for this instruction include F S(z2) < I'(x:). Since this instruction is a use ef and the
in-scope propertyys € dfndAt p(b.i,e1), thuszy # x2, z2 € dom(L1), La(x2) = L1(z2), andzs € inscope p(b.i). By the singleton
typing rule and subsumptioll,-p L1 (x2) : I'(x1) in Ls at b.4, as required.
New array (i > 0) In this caseP(b.i) = x1 : 7 := newarray(zz,z3) andLy = Li{z1 := v1}, whereL(z2) = n, Li(z3) = v3,v1 =
V3,...,0U3).
< 3) 3>

By expansion of the definitions:
defp(.l‘1) =b.i
dfndAt p(pc, e2) = dfndAt p(b.i,e1) U {z}
Z2,23 € dfndAtp(b.i,e1)
1 ¢ dfndAtp(b.i,e1)
By Lemma 2, it suffices to show that-p v : I'(x1) in Lo at b.i.
By assumption:
I'-p 21 : 7 := newarray(xz, x3)
By inversion ofl"' Fp z1 : 7 := newarray(z2, x3):
't array(I'(z3)) < T'(z1)
By assumption (sinces € dfndAt(b.i,e1)):
I'kFpos: F(x;;) in Lo at b.7
So by construction, using the newarray rule and subsumption:
I'kFp o F(l}l) in Lo at b.7
New array (: < 0)
The proof proceeds exactly as in the previous case, except that there is no proof obligatigmfat hence the construction from the
newarray rule follows immediately.
Array length rule In this caseP(b.i) = x1 : 7 := len(z2) andLs = Li{z1 := n} whereL,(z2) = (vo,...,vn—1). Also note that
deffactp(z1) = (x = len(x2))
By expansion of the definitions:
defp(xz1) = b.i
dfndAtp(pc, e2) = dfndAtp(b.i,e1) U{z}
x2 € dfndAtp(b.i,er)
z1 ¢ dfndAtp(b.i,e1)
First we must show that:
Ly Fp 21 = len(x2) at pc

By the environment rule (sincBz(z1) = n, andLa(z2) = (v, ..., Vn—1)):
Lo Fp x1isn at pc
Ly Fp z2is (vo,...,vn—1) at pc

So by the length rule:
Ly Fp len(zz) isn at pc
So by the comparison rule:
Ly Fp 1 = len(x2) at pe

By Lemma 2, it suffices to show th&t-p n : I'(z1) in Lo at b.i.
By assumption:
Ikpxy:7:=1len(xz)
By inversion:
'k int <T'(z1)
So the result holds by construction using the integer rule and subsumption.
Pointer base rule In this case,P(b.i) = x1 : 7 := base(x2) and Ly = Li{z2 := v@Q0}, where L, (z2) = v,v = (v’). Note that
deffactp(z1) = (x1 = 22@0)
By expansion of the definitions:
defp(x1) = b.i
dfndAt p(pc, e2) = dfndAtp(b.d,e1) U {z1}
x2 € dfndAtp(b.i,er)
z1 ¢ dfndAtp(b.i,e1)

POPL '06 Submission 17 2005/11/15

First we must show that:
Lo Fp 1 = 22Q0 at pc
By the environment rule (sinckz(z1) = v@0, and Lz (z2) = v):
Lo Fp x1 is vQ0 at pc
Lo Fp xoisvat pc
So by the managed pointer rule:
Lo Fp x2@0 is vQ0 at pc
So by the comparison rule:
Lo Fp x1 = 22Q0 at pc

By Lemma 2, it suffices to show th&t-p v@Q0 : I'(z1) in Lo at b.i.
By assumption:
T'kp z1: 7 := base(z2)
By inversion:
't I(z2) < array(m2)
I+ ptr, () < '(x1)
So by Canonical Forms:
T'kp v To in L1 at defp(l'z)
Note thath.i is a use ofz2, so by the in-scope propersdomp(defp(x2), b.i), andz1 ¢ inscope p(defp(z1)).
So by lemma 1:
TFp v :7sin Lo at b.i
So the result holds by construction using the managed pointer rule and subsumption.
Binary op rule (int) In this caseP(b.i) = z1 : 7 := z2 bopzs and Ly = Li{z1 := iz bopis}: whereL:(xz2) = iz, L1(z3) = 3. Note
thatdeffactp(xl) = (1‘1 = X2 bOp:L‘g).
By expansion of the definitions:
defp(1‘1) =b.i
dfndAt p(pc, e2) = dfndAtp(b.d,e1) U {z1}
Z2,23 € dfndAtp(b.i,e1)
z1 ¢ dfndAtp(b.i,er)
First we must show that:
Lo Fp x1 = 22 bopzs at pe
By the environment rule (sinckz(z1) = i2 bopis, La(x2) = i2, andLa(z3) = i3):
Lobp x1isis bOpig at pc
Lo Fp xais iz at pc
Lo bFp x3isis at pc
So by the integer arithmetic rule:
Lotp xo bOpSL‘g is 1o bOpig at pc
So by the comparison rule:
Ly Fp x1 = a2 bopzs at pe

By Lemma 2, it suffices to show th&ttp i2 bopis : I'(z1) in Lo at b.i.
By assumption:
T'kpxi:7:=x2bopas
So by inversion:
'k int <T'(x1)
So the result holds by construction using the integer rule and subsumption.
Binary op rule (pointer) In this case,P(b.i) = z1 : 7 := w2 bopzs and Ly = Li{z1 := vQi;y bopisz}: where Li(z2) =
U@iz, Ll(.’Eg) = 3. Note thatdeffactp(zl) = (.’1’1 = T2 bopl’g).
By expansion of the definitions:
defp(xz1) = b.i
dfndAt p(pc, e2) = dfndAtp(b.d,e1) U {z1}
x2,x3 € dfndAtp(b.i,e1)
z1 ¢ dfndAtp(b.i,e1)
First we must show that:
Ly Fp x1 = a2 bopzs at pe
By the environment rule (SinCéz (.Tl) = U@(iz bOpig), Lo (552) = pQqo, andLg (.1‘3) = i3):
Ly Fp x1 is vQ(i2 bopis) at pc
Lo Fp x2is vQig at pc
Lo Fp x3is i3 at pc
So by the pointer arithmetic rule:
Ly Fp 2 bopzs is v@(iz bopis) at pc
So by the pointer comparison rule:
Lo Fp x1 = a2 bopzs at pe

By Lemma 2, it suffices to show thattp v@is bopis : I'(z1) in L2 at b.i.

POPL '06 Submission 18 2005/11/15

By assumption:
T'kpxi:7:=x2 bopaxs
So by inversion:
I'FT'(x2) < ptr,(m)
Ik D(z3) < int
I'F ptr,(m2) < T'(z1)
So by Canonical Forms:
I'Fpv:7min Ly at defp(xz)
Note thath.: is a use oft2, so by the in-scope propersdom p(defp(z2), b.7), andz1 ¢ inscope p(defp(z1)).
So by lemma 1:
I'Fpv:70in Lo at b
So the result holds by construction using the managed pointer rule and subsumption.

Load rule Inthis caseP(b.i) = z1 : 7 := 1d(z2) [z3] andLs = L1{z1 := v;}: whereL,(z2) = (vo, ..., v,)@i,0 < i < n.

By expansion of the definitions:
defp(z1) = b.i
dfndAt p(pc, e2) = dfndAtp(b.i,e1) U{z1}
x2,x3 € dfndAtp(b.i,e1)
x1 ¢ dfndAtp(b.i,er)
By Lemma 2, it suffices to show th&tkp v; : I'(z1) in Lo at b.i.
By assumption:
1N |_p r1 T = ld(wz) [.Tg]
So by inversion:
'k I'(z2) < ptr,(r2)
T'FT(xs3) <pf
I+ T2 S F(CL‘1)
So by Canonical Forms:
I'Fpv:7min Ly at defp(wg)
Note thath.: is a use oftz, so by the in-scope propergdomp(defp(z2), b.7), and thate, ¢ inscope p(defp(z1)).
So by lemma 1:
I'tpv:79in Lo at bt
So in particular:
I'kFpwv;:1in Ly at b.d
So the result holds by subsumption.

(x@0<zo Az <x@len(x))

Proof Fact In this caseP(b.i) = z1 : 7 := pffact(xzz) andLy = Li{z1 := true}.

By expansion of the definitions:
defp(z1) = b.i
dfndAt p(pc, e2) = dfndAtp(b.i,e1) U{z1}
z2 € dfndAtp(b.i,e1)
x1 ¢ dfndAtp(b.i,er)
By Lemma 2, it suffices to show th&tkp true : I'(z1) in L2 at b.i.
By assumption:
Ibp x1:7:=pffact(za)
By inversion:
' F PE (eftactp (29)) = T'(21)
By assumption[is consistent. Therefore, sineg € inscope p(b.7), L1 Fp deffactp(z2) at defp(z2).
Note thatb.i is a use ofrz, so by the in-scope propersgomp(defp(x2),b.7), andz1 ¢ inscope p(b.7).
So by lemma 1:
Lo Fp deffactp (IQ) at b.i
By thetrue rule:
I' Fp true : Pf yefrace p (20)) 10 L2 at b
By subsumption:
I'kp true: '(z1) in Lo at b.d

Proof conjunction In this caseP(b.i) = x : 7 := pfand(yi,...,yn) andLs = L1 {x := true}.

By expansion of the definitions:

defp(x) = b

dfndAtp(pc, e2) = dfndAtp(b.i,e1) U{z}

Yy, Yn € dfndAtp(b.i,e1)

z ¢ dfndAtp(b.i,er)
By Lemma 2, it suffices to show thitkp true : I'(z) in Lo at b.i.
By assumption:

I'kpaz:7:=pfand(y1,...,yn)

POPL '06 Submission 19 2005/11/15

By inversion:
I'ET(y1) < pf (g

LT (yn) < Pf g,

'+ PEp pcnry) <TI'(z)
By Canonical Forms:

L1 +p Fy at defp(yl)

L1 +p Fy at defp(yn)
Note thath.; is a use ofr; throughy,,, so by the in-scope propergdom p(defp (y1), b.1) throughsdom p (defp (yn), b.4).
So by lemma 1:

LibFp Fy at b

LiFp F, at b.i
By the conjunction rule:
LiFp Fi AN---NF, at b.i
Note thatr ¢ inscope p(b.i).
Therefore by Weakening (lemma 1):
Lobp Fi AN---ANF, at b1l
By thetrue intro rule:
I'tptrue: F41 A---AF, in Lo at b.i.
By subsumption:
I'kp true: ['(z) in Lo at b.i.
Conditional Branch Rule In this caseP(b.i) = [z1 : 71,72 : T2] if x3 rop x4 goto b’ and Lo = Ly{x; := true}: whereL;(z3) =
i3, L1(z4) = 14, Wwherej = 1if = (i35 rop i4) and wherg = 2 if i35 rop i4.
It suffices to show:
edger (b, b') is an in-edge number fdf
edgep (b, b+ 1) is an in-edge number fab + 1)
b'.0 and(b + 1).0 are inpcs(P)
T'kp Ly : TQdfndAt p(pe, e2)
By the context-sensitive syntactic restrictions on programmjust be a block number in the program, dnehust not be the last block
in the program. Therefore, by definitiobf,0 and(b + 1).0 are inpcs(P). Also by definition, there are edges in the progrén®b’) and
(b,b + 1): so the in-edge numbers are likewise well-defined.
It remains to show thal Fp Lo : T'QdfndAtp(pc, e2). There are two casesi(is rop i4) and L, {z1 := true}, oris rop is and
Li{zs := true}.
Suppose-(is rop i).
By Lemma 2, it suffices to show th&t-p true : I'(z1) in L2 at b.i.
SinceL:(x3) = i3 and L1 (xz4) = 14, by the environment rule:
Libtpx3isizat bi
L1tpxyisia at bi
By assumption;= (i3 rop i4), so by the comparison rule:
Litp pf(ﬁ(l,3 top) 2F b.i
So by lemma 1:
Lotp PE((25 rop 2q)) @F b.i
So by the true introduction rule:
I'p true : pf((,, opay)) iR L2 at bi
By inversion of the typing derivation for the instruction:
I P (g rop 2y < T(21)
'k pf(zg 1op £4) < F(mz)
So by subsumption:
I'Fp true : I'(x1) in Lo at b
The argument is similar whei rop i4).

Goto rule: In this caseP(b.i) = goto V', L = L1, pc = b'.0, andes = edgep(b,b'). By the syntactic restrictions’ must be a
valid block number, s@'.0 € pcs(P). Since(b,b’) is an edgeedge,(b,b’) is a valid in-edge number fo¥'. By the definitions
dfndAt p(pc, e2) = inscopep((b,b').1) = inscopep(b.i) = dfndAtp(b.i,er). ThusT Fp Lo : TQdfndAt p(pc, e2) follows from
2).

n
A.4 Progress
LEMMA 10 (Env Typing).If I' Fp L : T'QdfndAt p(pc,n) andx € dfndAtp(pc,n), thenL(x) is well defined.
Proof: By inversion of the environment typing rules. [

LEMMA 11 (Progress)lf - S thensS is not stuck.

POPL '06 Submission 20 2005/11/15

Proof: Assume that S andS = (P, L, e, b.i).
Recall that by the definition of S
FP wt(P)=T
T'kp L:TQdfndAtp(pc,n)
n is an in-edge number fdrwherepc = b.i
pe € pes(P)
And by the definition of- P
P satisfies the SSA property
For eachr € vt(P), and eacly € fv(vt(P)), sdomp(defp(y),defp(z))
vt(P) - p for everyp in P
vt(P) Fp ¢ for every instruction in P
vt(P) I ¢ for every transfer in P
The proof proceeds by case analysisr(b.:).

D
Letz; := T> = ple] and(¥’, b) be thee'th incoming edge tad (this is well defined by the type rules).
By the use/def definition, the instruction is a useefat (b, b).1, so by the in-scope propers € dfndAtp(b.i, e) (sincei = 0).
By the definition of- S above and by lemma 10, note that € dom (L) and hencd.(z;) are well defined.
ThereforeS — (P, L{Z1 := L(Z2)},e,b.(i + 1)).
T:T =1
In this caseS — (P, L{z :=i},e,b.(i + 1)).
T T = X2.
In this case, since this instruction is a usexgf by the in-scope property,, € inscope p(b.1).
So by definitionzs € dfndAtp(b.i,e), and so by lemma 10(z:) is defined.
ThereforeS — (P, L{z1 := L(x2)}, e, b.(i + 1)).
Z1 : T := newarray(xsz, x3):
It suffices to show thak (z2) = n for some integer:, and (in the case that >= 0) thatL(z3) = v3 for some values.
By definition, z2, x3 € inscope p(b.7), and so by definitiongs.zs € dfndAtp(b.i,e).
Therefore, by 10.(xz2) = v2 andL(x3) = vs for somews, vs. It suffices to show that, = n for some integen.
By assumption]’ F I'(z2) < int, andl' Fp L : T'QdfndAt(b.i,e), so by Canonical Forms (lemma 4)(z2) = v, = n for some
integern.
z1: 7 := len(xz2):
It suffices to show thak (z2) = (vo, ..., vn—1).
By assumption]’ - I'(z2) < array(r2)andl’ Fp L : I'QdfndAt (.1, e), so by Canonical Forms (lemma&jz2) = (vo, ..., vn-1)
for somen.
Z1 : T := base(z2):
It suffices to show thak (z2) = v, v = (v’) for somev, v'.
By assumption]” - I'(z2) < array(r2)andl’ Fp L : T'QdfndAt (.1,), so by Canonical Forms (lemmaBjz2) = (vo, ..., vn-1)
for somen.
T1: T = 2 boOpxs:
It suffices to show thak (z2) = v2, L(z3) = i3, for some integetfs, and where either, = i, or v = v@Qi, for some integei, and
valuewv.
Recall that by assumptioli,-p L : I'QdfndAt »(b.i, €), and by the inscope property,, zs € dfndAtp(b.q,e).
By assumptionI” - I'(xz3) < int so by Canonical Forms (lemma &)x3) = is.
There are two cases to consider @, corresponding to the two possible last typing rules of the derivation.

1. Suppose the last rule was the integer operation rule. Then by assuniptiof(z2) < int, and so by Canonical Forms (lemma 4)
L(Iz) = i2.

2. Suppose the last rule was the managed pointer operation rule. Then by assumptidt{(z2) < ptr,(m2), and so by canonical
forms, L(z2) = v@is.

T T = ld({EQ) [1'5]
It suffices to show thak (z2) = (vo, ..., v,)@i and tha) < i < n.
By assumptionI’ + I'(z2) < ptr,(r2) and by the in-scope property, € dfndAtp(b.i,e), so by Canonical Forms (lemma 4),
L(z2) = (vo, ..., vn)Q1.
Also by assumptionl” + I'(z3) < Pf (1@0<zsAws<zs@len(z))r SO again by the in-scope property Canonical Forms applies. Therefore,
LFp (z@Q0<z2 A z2<z2@len(z)) at defp(z3), for somez.
Let D be the derivation of. p (z@0<z2 A z2<z2@len(z)) at defp(x3). Note that this derivation has a unique last rule.
By inversion ofD :
L tFp 2@Q0<z5 at defp (.1‘3)
The derivation ofL Fp £@0<z, at defp(xz3) must end in one of the two comparison rules (integer or pointer). Note though that by
Canonical Forms (abové)(z2) = (vo, . . ., v,)@i, and therefore the only derivation possible for the second premise of the comparison
rulesisthatl Fp xs is (vo, ..., vn) @iz at defp(z3).

POPL '06 Submission 21 2005/11/15

Therefore, by inversion, we have:
LFp xQ0is <’U0, ey Un>@il at defp(l'g)

LEpaxsis <1}0, - ,Un>@i2 at defp(l’;g)

i1 < ig
By inverting the first sub-derivation, we have:

LEpxis (vo,...,vn) at defp(z3)

LbEpeis0at defp(zs)
Therefore,i; = 0. By inverting the second sub-derivation, we haliérz) = (vo,...,v,)@iz, and by the Canonical Forms
L(x2) = (vo,...,vn)@i, so by transitivity, we have = i,. Finally, recall that; < i, so we have) < ;.

It remains to be shown that< n.

By inversion ofD :
Ltp z2<z2Qlen(x) at defp(x3)
By the same argument as above, this derivation must be a use of the pointer comparison rule.
Therefore, by inversion:
Lbp xzis (vo,...,vn)Qiz at defp(x3)
L Fp zQlen(x) is (vo,...,vn)Qi, at defp(x3)
12 < g
By the same argument as aboue= . It therefore suffices to show that = n + 1.
By inversion ofL Fp z@len(z) is (vo, . .., vn)Qi, at defp(x3):
LEpxis (vo,...,vn) at defp(z3)
L Fp len(z) is iy at defp(x3)
But note thatL(x) = (vo,...,vn), SOL Fp len(x) isn + 1 at defp(z3), and hencé, = n + 1.
x1 : 7 := pffact(xz2):
The reduction rule for this instruction always applies.
z1 : 7 := pfand(z2, z3):
The reduction rule for this instruction always applies.
[x1: 71,22 : T2] if T3 rOp T4 goto b':
It suffices to show that:
L1 (z3) = i3 for some integeis
L1 (z4) = i4 for some integeiy
edgep (b, b+ 1) is well-defined
edger (b, b') is well-defined
Note thatzs, z4 € inscopep(b.1), SOx3, x4 € dfndAtp(b.i,e).
By assumption:
Ik D(z3) < int
I'FT(z4) < int
So by Canonical Forms (lemma 4)
L+ (z3) = i3 for some integeis
Li(z4) = i4 for some integei,
Finally, by definition,(b, ") and(b, b + 1) are inedges(P) and hencedge (b, b + 1) andedge (b, b') are well-defined.
goto b':
It suffices to show thatdge (b, V') is well-defined, which follows immediately since by definitigh, b’) is in edges(P).

A5 Type Safety
Proof: [of Type Safety] The proof is by induction, Lemma 8, Preservation, and Progress. [

POPL '06 Submission 22 2005/11/15

