Subtyping is not a good “Match” for object-oriented languages *

Kim B. Bruce! Leaf Petersen? Adrian Fiech
Williams College Memorial University of Newfoundland
Williamstown, MA, USA St. John’s, Newfoundland, Canada

November 27, 1996

Abstract

We present the design and rationale of a new statically-typed object-oriented language,
LOOM. LOOM retains most of the features of the earlier language PolyTOIL. However the
subtyping relation is dropped from LOOM in favor of the matching relation. “Hash types”,
which are defined in terms of matching, are introduced to provide some of the benefits of
subtyping. These types can be used to provide support for heterogeneous data stuctures in
LOOM. LOOM is considerably simpler than PolyTOIL, yet the language is just as expressive.
The type system for the language is decidable and provably type safe. The addition of modules
to the language provides better control over information hiding and allows the provision of access
like that of C++’s friends.

1 Introduction

Most statically-typed object-oriented programming languages, including C++ [ES90], Java [AG96],
Object Pascal [Tes85], and Modula 3 [CDG"88], suffer from very rigid type systems which can
block the easy expression of programmers’ ideas, particularly in the definition of subclasses. Other
statically-typed object-oriented languages, such as Eiffel [Mey92] and Beta [MMMP90], are more
flexible, but require run-time or link-time checks in order to eliminate holes in the type system. One
important goal of our previous work in designing static type systems for object-oriented languages
has been to design flexible, yet safe, static type systems (see for example [Bru93, Bru94, BSvG95)).
In this paper we propose a fairly radical departure from previous statically-typed object-oriented
languages by dropping subtyping in favor of a relation called matching and a new type constructor
related to matching.

It has become clear in the last several years that the concepts of inheritance and subtyping in
object-oriented languages are not at all the same. (See [Sny86] for early hints, and [CHC90, AvdL90,
LP91] for more definitive treatments of the topic.) In earlier papers [Bru93, Bru94, BSvG95], we
introduced the notion of matching, a relation between object types which is more general than
subtyping. A history of matching can be found in [BSvG95].

*Bruce and Petersen’s research was partially supported by NSF grant CCR-9424123.

J’Corresponding author: Kim B. Bruce, Department of Computer Science, Williams College, Williamstown, MA
01267. kim@cs.williams.edu,(413) 597-2273, FAX: (413) 597-4116.

#Current address is School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, USA

An important feature of matching is that if two classes are subclasses, then the corresponding
object types are in the matching relation. However, these types are not generally in the subtype
relation if the language includes a type expression, MyType, standing for the type of self. Since
MyType is extremely valuable, we end up with a mismatch between subtyping and inheritance.

The language PolyTOIL [BSvG95] supports both subtyping and matching. It also supports
bounded polymorphism where the bounds on type parameters are given in terms of the matching
relation. Unfortunately, the relations of matching and subtyping are similar enough that it might
be difficult for a programmer to keep their differences straight. As a result we began considering
the possibility of simplifying the language by dropping one or the other.

It was clear that matching was absolutely necessary in PolyTOIL in order to express the type-
checking rules for subclasses, and to provide constraints for polymorphic operations and data struc-
tures. Subtyping was too restrictive to serve either of these purposes. Moreover, as we looked at
the sample programs we had written in PolyTOIL, we noticed that we rarely used subtyping. In
particular, in the presence of MyType and match-bounded polymorphism, we almost never needed
to explicitly change the types of methods in subclasses.

With this in mind, we decided to be bold and investigate the results of eliminating subtyping in
favor of matching. While this caused no problems with the inheritance mechanism, we did discover
a few situations where we found it difficult to do without subtyping. To deal with this we introduced
a new type constructor, #7', which represents elements whose types match the type 7. With this
addition, we found that we had a language which was essentially as expressive as PolyTOIL, yet
significantly less complex.

In the next section we review briefly the main features of PolyTOIL. In section 3 we introduce
the language LOOM. We pay special attention to the introduction of a new type constructor
which can be applied to object types to form types which have properties similar to subtypes (but
are less restrictive). In the following section we provide a brief overview of the technical results
used to justify the use of the language: type-checking is decidable and the language is provably
type-safe. We provide a brief overview of LOOM'’s module system in section 5. Finally in section
6 we summarize and evaluate the features of the language.

2 Introduction to PolyTOIL and matching

In [BSvG95] we introduced PolyTOIL, a statically-typed object-oriented programming language
which provides all of the usual constructs of class-based object-oriented languages. In particular,
it supports objects which consist of instance variables and methods, and in which computation is
based on message-sending. Reuse is supported via inheritance, subtyping, and a form of bounded
polymorphism.

We refer the reader to [BSvG95] for the details of the language. We provide only a brief
summary here. Relatively innovative features of the language include:

e The use of MyType in classes to refer to the type of self, the receiver of the message.

e The treatment of classes as first-class values of the language. They have types and can be
both parameters to functions and returned as the results of functions.

e The separation of the inheritance and subtyping hierarchies, in order to avoid problems which
can arise with so-called binary methods.

e The introduction of a new ordering called “matching”, written <# , which corresponds closely
to type changes allowed in defining subclasses. Subtyping, written <: , is also supported.

e Support for a form of bounded polymorphism in which the bound is expressed in terms of
the new matching ordering.

Within the scope of each object (or class), PolyTOIL defines a type identifier MyType that
represents the type of the object itself. This type is “anchored” to the type of the object in which
it appears, so that an appearance of MyType in the type of a method inherited from another class
represents the type of an instance of the current class, rather than the parent class in which the
method was defined.

Matching is a relation between types which is very similar to subtyping, but is designed to
correspond better to the inheritance hierarchy of classes and objects. An object type 7 matches an
object type o in PolyTOIL, if for every method m;: o; included in type o there is a corresponding
method m;: 7; included in type 7 such that o; <: 7; (where occurrences of MyType in the method
types are treated as uninterpreted free variables).

The definition of subtyping for object types is similar to that for matching, but also requires
that MyType only occur positively (see [BSvG95]). In particular, an object type with a method
with parameter of type MyType cannot have any non-trivial subtypes. Similarly, if a class has a
method with a parameter of type MyType, then subclasses will not give rise to subtypes.

While o <: 7 implies that any element of type o can be treated as being of type 7, the import
of matching is weaker. If o <# 7 then any message sent to an object of the type 7 could also be
sent to an object of type o.

MyType and matching are crucial to the expressiveness of PolyTOIL. MyType is often used
in expressing the types of methods whose types will need to change in subclasses. It appears
frequently in association with copy or clone methods and so-called binary methods — methods
whose parameter should always be the same type as the receiver. Bounded polymorphism based on
matching proves to be a very useful tool in object-oriented programming — so much so that when
programming in PolyTOIL, we found that it (in combination with the use of MyType) almost
completely replaced the use of subtype polymorphism as a mechanism for producing generic code.

Figure 1 provides an example of Node and DbleNode class definitions. Notice that for n: Integer,
class DbleNode(n) inherits from Node(n). The occurrences of MyType in Node implicitly denote the
type of objects generated by Node, while in DbleNode they denote the type of objects generated by
DbleNode. 1t follows easily from the definition of matching in PolyTOIL that the types generated
by these classes are in the matching relation. However they are not subtypes because setNezt and
attachRight have parameters of type MyType.

Nevertheless it is possible to define a polymorphic list class that when instantiated with the
type of objects generated by Node will generate singly-linked lists, while if it is instantiated with
the type of objects generated by DbleNode will generate doubly-linked lists. (see [BSvG95] for
details.) The fact that these types are not subtypes is not a handicap in using them in the ways
intended.

These results suggested to us that subtyping might not be necessary at all. At the same time,
we began to feel that presenting programmers with both the subtyping and matching hierarchies
on types in a single language might be confusing.

The paper [GM96] in ECOOP ‘96 presented a language TooL, which is more general than Poly-
TOIL in that the bound on polymorphic types and classes could be specified using either subtyping

class Node(n: Integer)
var
val = n: Integer;
next = nil: MyType;

methods
function getVal(): Integer {return val.clone() }
procedure setVal(newVal: Integer) {val := newVal.clone()}

function getNext(): MyType {return next}

procedure setNext(newNext:MyType) {next := newNext}

procedure attachRight (newNext: MyType) {self.setNext(newNext)}
end class;

class DbleNode(n: Integer)
inherits Node(n) modifying attachRight

var
prev = nil: MyType

methods
function getPrev() :MyType {return prev}
procedure setPrev(newPrev: MyType){prev := newPrev}

procedure attachRight (newNext: MyType) {self.setNext(newNext);
newNext.setPrev(self) }
end class;

Figure 1: Singly and doubly-linked node classes in PolyTOIL.

or matching, and type-checking of classes could be done assuming that MyType either matched or
was a subtype of the intended type of objects generated by the class. After experimenting with the
language, the authors decided the language was too complex, and suggested dropping matching.
Based on our experience, we prefer instead to give up subtyping. In the rest of this paper, we
describe the language LOOM, which we designed as a simpler replacement for PolyTOIL.

3 LOOM: Core language

As a result of our concerns about the complexity of PolyTOIL, we developed the language LOOM.
LOOM retains the syntax and match-bounded polymorphism of PolyTOIL, but completely aban-
dons the subtyping relation in favor of a simplified version of matching. As a whole, LOOM is a
much simpler language than its predecessor.

In abandoning subtyping, we also decided not to allow the types of inherited methods to be
changed when overridden. While this may seem like a step backwards in the design of more flexible
type systems, our experience indicates that the presence of the MyType construct (standing for
the type of self) combined with match-bounded polymorphism provides sufficient flexibility for
redefining methods in subclasses.

Because we wish to have matching reflect the changes in types allowed in defining subclasses,
we provide a more restricted definition of matching in LOOM compared to that of PolyTOIL.

Definition 3.1 Let o and 7 be object types. Then o <# 1 iff all methods which occur in T also
occur in o with the same types. In other words, o is obtained by adding new methods to 7.

In PolyTOIL, the matching relation allowed the types of corresponding methods to be subtypes.
Since the corresponding types must now be the same, it might seem that this would significantly
impact the expressiveness of the language. While there are some occasions where this restriction
forces us to introduce type parameters, it is our experience that most of the time when we wish to
have a change in the type of a method, the use of MyType provides the necessary change implicitly.

3.1 Hash types replace the use of subtyping

In object-oriented languages, subtyping allows a value of one type to masquerade as a value of a
supertype. This permits the definition of data structures and operations that treat heterogeneous
objects with common functionality. This is primarily used in two contexts. The first is in applying
functions to parameters which are subtypes of their declared type. The second is for assignments
to variables. While the first problem can be handled fairly elegantly with match-bounded polymor-
phism, the second is essentially impossible in PolyTOIL without subtype polymorphism.

In those places where we might have passed in a parameter that was a subtype of the declared
type of the parameter, we could instead provide the function or procedure with an extra type
parameter that was bounded (using matching) by the originally declared type of the parameter. If
we had a procedure p in PolyTOIL that took a parameter of type Window, then it could also be
applied to parameters which were subtypes of Window. In LOOM we could rewrite it as procedure
(T <# Window;w: T) with appropriately modified body. This procedure is now more general
than the original because it can be applied to objects whose type merely matches that of Window
rather than being a subtype. In particular, if Window contains a method with a parameter of type
MyType, there are many types which will match it, but none which are proper subtypes.

This rewriting of programs has one major disadvantage — it introduces extra type parameters
into many of the method definitions. One of the advantages of subtyping is that it is possible to
write one simple function definition with a parameter of a fixed type, yet apply it to arguments of
many more types. We address this problem below.

The use of subtyping in assignment statements occurs frequently when defining heterogeneous
data structures. In a language with subtyping, we can relatively easily create a data structure in
which all data values are subtypes of some fixed type. For instance, in programming a graphic
user interface one might want to maintain a heterogeneous list of windows. From the point of
view of maintaining the list, one need only require that each list element supports certain window
operations. This can be captured most naturally by assuming each has a type which matches some
general window type, rather than using subtyping. (After all, some of the methods might include
negative occurrences of MyType.) We wish to be able to handle this in our language.

In implementing these heterogeneous data structures, we often have an instance variable to
which we wish to assign the values to be stored in the structure. Generally it is assumed that
the type of the value to be stored is a subtype of the declared type of the variable. However, as
above, we have found that assuming it matches the declared type is often a better description of
what is actually needed. Unfortunately, we know no way of modeling the flexibility of subtyping
for variable assignments using match-bounded polymorphism.

To solve these problems, we introduce a new type, #7, for 7 an object type. If a variable
or formal parameter is declared to have type #7 then it will be able to hold values of any type

class HetNode(T <# Object; v: #T)
var
value = v: #T;
next = nil: MyType;

methods
function getValue(): #T {return value.clone() }
procedure setValue(newValue: #T) {value := newValue.clone()}

function getNext(): MyType {return next}

procedure setNext(newNext:MyType) {next := newNext}

procedure attachRight (newNext: MyType) {self.setNext(newNext)}
end class;

class HetDbleNode(T <# Object; v: #T)
inherits Node(T,v) modifying attachRight

var
prev = nil: MyType
methods
function getPrev() :MyType {return prev}
procedure setPrev(newPrev: MyType){prev := newPrev}

procedure attachRight (newNext: MyType) {self.setNext(newNext);
newNext.setPrev(self) }
end class;

Figure 2: Polymorphic singly and doubly-linked node classes.

matching 7.}

The type-checking rules Weakening and Subsump in Appendix C state the essential properties
of these new types: If e has type 7 and 7 <# o, then e also has type #o. We refer to types of the
form #7 as “hash” types, in reference to the constructor.

We can now rewrite the procedure declaration above nearly as simply as with subtyping by
writing procedure p'(w: #Window) in place of the longer polymorphic definition above. Similarly
we can declare a variable to have type #7 if it is to hold values with types that match 7.

3.2 A heterogeneous ordered list program in LOOM

Before presenting the syntax and type-checking rules of LOOM formally, we provide an extended
example of a heterogeneous list program. We begin by defining parameterized singly-linked and
doubly-linked nodes in LOOM, and work up to defining a class which can be instantiated to
provide either singly-linked or doubly-linked heterogeneous ordered lists.

In Figure 2 we provide examples of parameterized HetNode and HetDoubleNode classes in
LOOM. Unlike the earlier examples of Nodes from PolyTOIL, they are now parameterized by
the type of value stored in the node as well as the initial value for that node. The upper bound

Tt may be useful to think of #7 as an abbreviation for the type 3t <# 7.t of the second order lambda calculus.
(See [CW85, MP88].)

HetNodeType(T <# Object) = ObjectType
getValue: Func():#T;
setValue: Proc(#T);
getNext: Func() :MyType;
setNext: Proc(MyType)
attachRight: Proc(MyType)

end ObjectType;

HetDbleNodeType (T <# Object) = ObjectType include HetNodeType
getPrev: Func() :MyType;
setPrev: Proc(MyType) ;
end ObjectType;

Figure 3: Types for singly and doubly-linked node classes.

Object on the type parameter T is a built-in type which every object type matches. Because the
instance variable value is declared to have type #7T, it can hold a value of any type matching
T. Similarly, the methods getNezt and setNext use hash types. On the other hand, the instance
variables next and prev can only hold values with type exactly MyType. Thus the nezt field of an
object generated by class HetNode can only hold nodes, while the corresponding field from class
HetDbleNode can only hold doubly-linked nodes. Note that for fixed U <# Object and u: #U,
HetDbleNode(U,u) inherits from HetNode(U,u).

We can create new objects from the HetNode class by applying the new operation to the fully
instantiated class. Thus if U is an object type and w:#U, then new HetNode(U,u) results in the
creation of a new node object whose wvalue field is initialized to w.

The type of objects is written using the ObjectType constructor. The type functions HetN-
odeType and HetDbleNodeType defined in Figure 3 describe the types of objects generated by the
classes HetNode and HetDbleNode.

The keyword include used in the definition of HetDbleNodeType indicates that all methods
of HetNodeType are included in HetDbleNodeType, as well as the new methods declared there. In
particular, if U <# Object, then HetDbleNodeType(U) <# HetNodeType(U). Of course, there is an
implicit change of type resulting from the occurrences of MyType in the types of getNext, setNext,
and attachRight, but the definition of matching is sensitive only to ezplicit changes in types.

The use of MyType ensures that instance variable, parameter, and return types change appro-
priately when new classes are defined by inheritance, and new types are defined using include. The
type checking rule Msg in Appendix C specifies that when a message is sent to an object whose
corresponding method involves the type MyType, all occurrences of MyType in the method type
are replaced by the type of the receiver. Thus if sn: HetNodeType(U) for some fixed type U, then
the type of parameter newActualNezt in sn.setNext(newActualNext) must also be HetNodeType(U)
for the message send to be type correct. On the other hand if dn: HetDbleNodeType(U), then the
type of newActualNezt in dn.setNext(newActualNext) must be HetDbleNodeType(U).

We define OrdEltType to be an object type which includes operators which allow comparisons
with elements of any type matching OrdEltType:

OrdEltType = ObjectType

class OrdList(N <# OrdNodeType)

var
head = nil: N;
methods
function find(match:#0rdEltType): Boolean
var
current: N;
{ current := head;
while (current != nil) & match.gt(current.getValue()) do
current := current.get_next()
end;
return (current != nil) & (current.getValue()).eq(match))}

procedure addNode (newNode:N)
end;

OrdListType (N <# OrdNodeType) = ObjectType -- parameterized type
find: Func(#0rdE1tType): Boolean;
addNode: Proc(N);
end ObjectType;

Figure 4: Heterogeneous linked list.

gt, eq: Func(#0rdEltType) :Boolean;

end ObjectType;

We wish to construct a heterogeneous list, each of whose elements has a type matching Or-
dEltType. The individual nodes holding those values will have type OrdNodeType = HetNode-
Type(OrdElt Type) if we wish to have a singly-linked list, or type OrdDbleNode Type = HetDbleNode-
Type(OrdElt Type) if we wish to have a doubly-linked list. However, because OrdDbleNode Type <#
OrdNode Type, we can take advantage of the polymorphism by creating a list class which is param-
eterized so that the type of its nodes is a fixed type which matches OrdNode Type.

In Figure 4 we provide the definition of a parameterized class which generates heterogeneous
lists of elements whose types all match OrdEltType. The figure also includes the type function
OrdListType which describes the objects generated by the class.

Because OrdList can be applied to any type which matches OrdNodeType, we can easily instan-
tiate the lists to be either singly or doubly-linked. Thus

slist := new OrdList(OrdNodeType)
creates a new singly-linked heterogeneous list, while

dlist := new OrdList(OrdDbleNode Type)

creates a new doubly-linked heterogeneous list. If elt has any type which matches OrdEltType
then slist.find(elt), dlist.find(elt), slist.addNode(new Node(OrdEltType,elt)), and dlist.addNode(new
DbleNode(OrdElt Type,elt)) are correctly typed message sends which look up or add new elements
to singly or doubly-linked lists.

3.3 Type-checking and hash types

The rules for forming legal type expressions and defining matching in LOOM are given in Appendix
B, while the most important type-checking rules can be found in Appendix C.

The addition of hash types provides most of the original functionality of subtype polymorphism.
It allows us to write heterogeneous data structures and to write functions that operate on all objects
whose type matches their parameter. However there are some new wrinkles in type checking that
should be noted.

As stated earlier, by the Weakening and Subsumption type-checking rules, it is possible for
elements of a fixed type o to be assigned to a variable with type #7 for o <# 7, but not vice-versa.
Similar rules hold for the correspondence between formal and actual parameters of functions and
procedures.

We discussed above the type-checking rule for sending messages, Msg, which appears in Ap-
pendix C. For that rule, we needed to know the exact type of the receiver. But what happens if all
we know about the receiver o is that it has a type of the form #o¢7 If the method to be applied has
a type 7 in which all occurrences of My Type are positive (e.g., MyType does not occur as the type of
a parameter), then one can apply the same typing rule. That is, the type of 0.m is 7[#o/MyType].
(See rule Msg# in the appendix.) It can be shown via an inductive proof that this rule is sound.
However, if the method type 7 includes a negative (contravariant) occurrence of MyType, then the
rule does not hold.

For example, if a_node has type #Node_type, then the expression a_node.attach_right(b_node)
will not be well-typed. The value of a_node at run-time might be of any type matching Node_type.
If the value held in a_node actually has type Node_type at run-time, then the type of the parameter
b_node must be Node_type. On the other hand, if the type of the value held in a_node is actually
DbleNode_type at run-time, then the type of the parameter b_node must instead be DNode_type.
Since we cannot determine the type of the value statically, we cannot determine which is the correct
type for the parameter. (Note that having an actual parameter with type #Node_type makes the
situation even worse!)

Thus if the receiver of a message has a hash type, we cannot send it a binary message, or indeed
any message whose type involves an occurrence of MyType in a contravariant position.

A practical consequence of this is that if we have a heterogeneous data structure, as is the case
in Figure 4 above, we can only send non-binary messages to its elements (at least in the absence of
a type-case statement — or equivalent — which allows the run-time checking of types). One might
suspect that this is the reason why the type OrdEltType in the program has no binary methods.
However, a moment’s thought shows that if ge and eq had types of the form func(# MyType):Boolean
then there would be no way of comparing successive elements of the list, since their values could be
of incomparable types matching OrdEltType. In that case one could not send a comparison method
to one using the other as a parameter. Thus it would be a logical mistake to try to use a binary
method there.

It is also worth noting here that we would be stuck in this case in a language supporting

10

subtyping as well. If the type 7 of elements in the list had a binary method, then no proper
subtypes of 7 would exist, forcing the list to be homogeneous. In LOOM, such binary methods
might exist in 7, as long as they aren’t used in the methods of the heterogeneous data structure.

Finally in many cases where a binary method needs to be sent to a parameter z with a hash
type of the form #7, the function declaration can be rewritten to take an explicit type parameter
t <# 7 and parameter z:t. In this way we have an explicit name for the type of =, and can provide
an actual parameter for a binary method with a parameter which is also of type ¢.

Thus while this restriction on typing message sends corresponding to binary methods seems to
be a limitation, the limitations are actually less severe than in languages with subtyping.

4 Decidability, natural semantics, and type safety

In this section we outline some important results for LOOM whose details will be provided else-
where. These include the decidability of type checking for LOOM, the provision of natural seman-
tics, and the proof of type safety.

Pierce’s [Pie92] results on the undecidability of subtyping in the second-order bounded polymor-
phic lambda calculus has caused designers of languages supporting polymorphism to be concerned
about whether their type systems are undecidable. While LOOM does not support subtyping, one
might be concerned that match-bounded polymorphism could lead to the same difficulty. Luckily
this turns out not to be the case. In fact the determination of whether two types match is rela-
tively straightforward since one object types matches another only if the first type contains all of
the methods (with corresponding types) of the second. As usual it is straightforward to replace the
general transitivity rule for matching with a restricted rule which is computationally easy to deal
with.

The algorithm for type checking terms is fairly straightforward. As with PolyTOIL, the
complexity of type-checking is non-polynomial in the worst case, since in contrived families of
examples the type of a term can grow exponentially fast in the length of the term. In practice we
find type checking in LOOM to be acceptably fast.

In order to prove the type safety of LOOM, we need to show that the type system is consistent
with a semantics for the language. We can define a natural semantics for LOOM similar to that
provided for PolyTOIL [BSvG95]. Once defined we can prove:

1. If a term of LOOM has type 7 (possibly under some assumptions on free term and type
variables) and if the evaluation of the term halts (when started with an environment and
state that are consistent with the assumptions), then the value will also have type 7.2

2. If a term is well-typed then the evaluation will not get “stuck”. That is, it will not get to a
point in the evaluation where the partial result is not a designated “reduced value”, yet no
computation rule applies.

The proofs of these results are similar to those in PolyTOIL, but are simpler because of the
lack of subtyping. The only terms which require extra work are message sends to hash types, but a
proof by induction on the structure of terms suffices to show that the type-checking rule is sound.

2If 7 involves free type variables then the type of the value will have a type obtained by replacing the free type
variables of 7 by corresponding values from the environment.

11

Details of the semantics, formal statement of the theorems, and the proofs will be given in an
extended form of this paper.

5 Adding modules to LOOM

As programmers and language designers have gotten more experience with object-oriented lan-
guages, it has become clearer that class boundaries are not always the correct abstraction layer
for large programs. Interestingly it is the hybrid languages which have grown from ADT-style
languages which have often provided the best support for this modularity. Thus Ada 95 [Int95]
and Modula-3 [CDG™"88] have introduced module structures which are distinct from classes. Pure
object-oriented languages like Smalltalk and Eiffel have generally chosen to identify classes with
modules, though newer languages like Theta [DGLM94| (which can be seen as a descendant of the
ADT-style language, Clu) and Java [AG96] have also chosen to provide modules.
Modules provide three important functions in programs:

1. They provide a way of organizing code into manageable pieces and help with name-space
management by only exporting names that are needed elsewhere.

2. They provide important abstraction barriers, lessening the dependence of a unit on the im-
plementation details of another unit.

3. They provide support for separate compilation, aiding the programmer in debugging large
programs as well as making it possible to provide reusable code in libraries in such a way that
the original source code need not be revealed.

With strong language support for modules it should be possible to change the implementation of
a type without changing its public interface and without requiring recompilation of other modules
which import it. See [Jon96] for a more detailed discussion of modules.

We have chosen to follow the lead of languages like those in the Modula and Ada families and
provide module interfaces which can be completely separate from the module implementation (e.g.,
the interface can be compiled before the implementation is written). A key issue is to provide a
mechanism for revealing in the interface as much or as little as desired about the details of the
implementation of a type.

In ADT-style languages it is typical for type definitions in interfaces to consist either of manifest
types, in which all details of the type definition are revealed, or opaque types, in which only the name
of the type is revealed. However in ADT-style languages, operations are defined externally from
the type itself. Thus an opaque type will be accompanied by a collection of constants, functions,
and procedures related to it that are to be exported (though their bodies are typically hidden).

In object-oriented languages, however, object types include the names and types of their meth-
ods. In ADT-style languages it is easy to reveal only certain operations, leaving others hidden in
the implementation module. We can emulate this in object-oriented languages by providing partial
revelations of object types as is done in Modula-3. That is, for each object type we only list those
methods which we wish to publicly advertise. This can be expressed using the matching relation
from LOOM.

The following example is similar to one presented in [PT93]. If we declare

12

IntSetType <# ObjectType
add: proc(Integer);
remove: proc(Integer);
contains: func(Integer) :Boolean;
intersect: proc(MyType)
end;

in an interface, then we know that IntSetType has methods add, remove, contains, and intersect
with the appropriate types. As before, we note that subtyping would not be an appropriate relation
(even if it was supported in LOOM) because the fact that intersect has a parameter of type My Type
implies that the given object type has no proper subtypes!

LOOM, like PolyTOIL, allows the programmer to label methods as either Visible or Hidden,
depending on whether or not we wish them to be available outside of the object’s own methods.?
Also an object’s instance variables are not accessible outside the object’s methods. Why then do
we need the extra mechanism of partial revelations? The reason is that some objects might need
to provide extra methods which are only accessible to a limited number of other types of objects.
This is exactly the idea behind C++’s friends and is similar to the provision of different levels of
access in Ada 95 and Java.

Let us continue with the example above of sets of integers. In order to implement the intersection
operation efficiently we may need to have more access to the representation of the sets. Appendix A
contains an example of a collection of LOOM modules which supports the efficient implementation
of integer sets as ordered lists

There are several points worthy of remark in this example. First notice that OrdListType is a
manifest type. The user has full access to the type and to the class OrdListClass which generates
objects of that type. However the type IntSetType is only partially revealed. Inside the imple-
mentation module it is defined as an extension of OrdListType (and hence matches OrdListType),
but that information is not available outside of the implementation module. Hence one may not
deduce in any other module that IntSetType <# OrdListClass. This represents good programming
practice since one should not in general be able to use list operations on sets. Notice also that
because OrdListType is not exported by Interface SetOfInt, the name space is not cluttered up
with details about lists.

A second important point about this example is that our (efficient) implementation of intersect
depends on being able to use the fact that IntSetType is implemented as an ordered list. If, for
example, all of the list operations (such as first, next, and deleteCur) were hidden methods, we
would not be able to send the corresponding messages to the parameter other. If there were methods
of other classes which also needed access to these non-exported methods, we would simply include
their definitions in the same module. Thus we can achieve the effect of C++’s friends without
letting the non-exported methods escape the module boundary.

This technique for providing information hiding while providing access by operations at the
same level of abstraction is similar to that suggested in [PT93] and [KLM94|, where bounded
existential quantifiers based on subtyping are used to perform the information hiding.

In summary, our implementation of modules in LOOM allows the programmer to specify how
much information about an object type is revealed to other program units. While it is possible
to have a totally opaque type, this should be relatively rare with the object-oriented style of

3For simplicity, we have not labeled the methods in the earlier examples, though all would be labeled as Visible.

13

programming. The user can reveal all of the details of a type definition by providing a manifest type,
or may reveal only a portion of the type by providing a matching bound on the type. Functions,
procedures, class, and other constant declarations can also be exported by placing them in a module
interface. OQur module design satisfies all of the goals listed at the beginning of this section.

6 Evaluation of LOOM

One of the most difficult decisions to make in designing a programming language is not so much
what features should be included, but rather which features can (or should) be excluded. Based on
our previous work, we concluded that subtyping was a feature that could be excluded from object-
oriented languages. In this paper we presented the language LOOM, which dropped subtyping in
favor of matching, and added hash types.

Aside from subtyping, features of LOOM include all of those in our earlier language Poly TOIL.
Because of the lack of subtyping, we decided not to allow types of methods to be changed when
defining subclasses.* Similarly, matching now requires corresponding method types to be the same,
rather than subtypes. To replace other uses of subtyping we introduced a new type constructor
which can be applied to object types to obtain “hash types”. With the addition of the hash types,
the elimination of subtyping has very little impact on the expressiveness of the language.

Another advantage of LOOM is that the matching relation is relatively trivial, only allowing
the addition of new methods to object types, as compared to subtyping which is defined on all
types and is often quite complex. The covariant and contravariant rules for subtyping functions
are a good example of the complexity of subtyping that we can simply ignore in LOOM.

Binary methods have been hard to express in most statically-typed object-oriented programming
languages because they seem to require a My Type term representing the type of self, yet MyType and
subtyping have not interacted well. See [BCC'95] for an exposition of the difficulties of handling
binary methods in statically-typed object-oriented languages. In that paper, matching is suggested
as one way of getting around these difficulties, but it is also criticized as not providing support for
heterogeneous data structures. In this paper we have shown how to provide that support by the
use of hash types.

One possible disadvantage of LOOM is that the programmer must explicitly mark the types
of variables and formal parameters which are allowed to hold values of more than one type by
declaring them with hash types. Variables and parameters with non-hash types are only allowed
to hold values of the type with which they are declared. The programmer is required to “plan
ahead” which slots are allowed to hold values which match because the typing rules for message
sending are different for hash types than for regular types. It is worth noting in this regard that
Ada 95 [Int95] also requires the programmer to mark the types of variables and parameters with
the “class” suffix if values which are subclasses of the declared type may be used.

A restriction of LOOM compared to PolyTOIL is that binary messages may not be sent
to hash types. As discussed in the previous section, this has little practical impact since binary
methods are usually not appropriate for heterogeneous data, and match-bounded polymorphism
can usually be used in place of hash types where binary methods are needed.

We noted that the type-checking algorithm for LOOM is decidable, with low complexity in

*An early version of LOOM did allow types to be changed, but we decided that the gains were not worth the
added complexity.

14

practice. Also, the static type system for LOOM guarantees that no type errors will occur during
the execution of type-checked programs, so LOOM is type-safe.

LOOM also provides significant features for information hiding. All instance variables are
hidden from clients, while methods are marked as being either visible or hidden in order to determine
their visibility to clients. All instance variables and methods are visible to inheritors. We described
briefly the module facility in the language which provides for separate compilation, restriction of the
scope of names, and information hiding. Like Modula-3, it provides extra support for information
hiding by the use of partial revelations of types. This fine control over information hiding can be
used to provide objects defined in the module access to more features than those outside, providing a
feature similar to C++’s friends. This also allows more efficient implementation of binary methods.

We are currently examining mechanisms to allow modules to support multiple interfaces. This
would make it possible to provide different views of a module to different clients. For instance a
client wishing to define a subclass of a class in a module will need much more detailed information
about the superclass than a client which simply wishes to be able to generate and use objects
generated from the class.

We have implemented an interpreter for LOOM, which is based on the natural semantics of

the language. In spite of the seemingly radical step of eliminating subtyping, our experience is that
LOOM provides a conceptually simpler language than PolyTOIL, yet provides essentially the
same expressiveness as the earlier language. It may be time to rethink the notion that subtyping
is an essential part of object-oriented languages.
Acknowledgements: The LOOM language design is due to Bruce and Petersen. A more complete
description of the language design, type-checing rules, natural semantics, and the analysis of com-
plezity of type-checking can be found in Petersen’s honors thesis [Pet96]. The proof of type safety
was done by Fiech with the assistance of Bruce, and was based on a similar proof for PolyTOIL.
The LOOM implementation was primarily accomplished by Petersen with assistance from Hilary
Browne, and was based on the PolyTOIL interpreter written by Robert van Gent and Angela
Schuett, with assistance from Petersen.

References

[AGI6] Ken Arnold and James Gosling. Java. Addison Wesley, 1996.

[AvdL90] Pierre America and Frank van der Linden. A parallel object-oriented language with
inheritance and subtyping. In OOPSLA-ECOOP ’90 Proceedings, pages 161-168. ACM
SIGPLAN Notices,25(10), October 1990.

[BCC*T95] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group,
Gary T. Leavens, and Benjamin Pierce. On binary methods. Theory and Practice
of Object Systems, 1(3):221-242, 1995.

ru . Bruce. Safe type checking in a statically typed object-oriented programming lan-

Bru93 K. B Safe t hecking i tatically typed object-oriented ing 1
guage. In Proc. ACM Symp. on Principles of Programming Languages, pages 285-298,
1993.

[Bru94] K. Bruce. A paradigmatic object-oriented programming language: design, static typing

and semantics. Journal of Functional Programming, 4(2):127-206, 1994. An earlier
version of this paper appeared in the 1993 POPL Proceedings.

[BSvG95]

[CDG88]

[CHCY0]

[CW85]

[DGLM94]

[ES90]

[GMY6]

[Int95]

[Jon96]

[KLMO94]

[LPY1]

[Mey92]
[MMMPY0]

[MP88]

[Pet96]

15

Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe poly-
morphic object-oriented language, extended abstract. In ECOOP ’95, pages 27-51.
LNCS 952, Springer-Verlag, 1995.

L. Cardelli, J. Donahue, L. Galssman, M. Jordan, B. Kalsow, and G. Nelson. Modula-3
report. Technical Report SRC-31, DEC systems Research Center, 1988.

William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping.
In Proc. 17th ACM Symp. on Principles of Programming Languages, pages 125-135,
January 1990.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471-522, 1985.

Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Meyers. Abstraction
mechanisms in Theta. Technical report, MIT Laboratory for Computer Science, 1994.

Margaret A. Ellis and Bjarne Stroustrop. The annotated C*+ reference manual.
Addison-Wesley, 1990.

Andreas Gawecki and Florian Matthes. Integrating subtyping, matching and type
quantification: A practical perspective. In ECOOP ’96, pages 26—47. LNCS 1098,
Springer-Verlag, 1996.

Intermetrics. Ada 95 Reference Manual, version 6.0. 1995.

Mark P. Jones. Using parameterized signatures to express modular structure. In 23rd
ACM Symp. Principles of Programming Languages, pages 68—78, 1996.

Dinesh Katiyar, David Luckham, and John Mitchell. A type system for prototyping
languages. In Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Sym-
posium of Principles of Programming Languages, Portland, Oregon, pages 138-150.
Association for Computing Machinery, January 1994.

Wilf LaLonde and John Pugh. Subclassing # subtyping # is-a. Journal of Object-
Oriented Programming, pages b7—62, January 1991.

B. Meyer. Eiffel: the language. Prentice-Hall, 1992.

0. Madsen, B. Magnusson, and B. Moller-Pedersen. Strong typing of object-oriented
languages revisited. In OOPSLA-ECOOP ’90 Proceedings, pages 140-150. ACM SIG-
PLAN Notices,25(10), October 1990.

J.C. Mitchell and G.D. Plotkin. Abstract types have existential types. ACM Trans.
on Programming Languages and Systems, 10(3):470-502, 1988. Preliminary version
appeared in Proc. 12th ACM Symp. on Principles of Programming Languages, 1985.

Leaf Petersen. A module system for LOOM. Williams College Senior Honors Thesis,
1996.

16

[Pie92] Benjamin C. Pierce. Bounded quantification is undecidable. In Proc 19th ACM Symp.
Principles of Programming Languages, pages 305-315, 1992.

[PT93] Benjamin C. Pierce and David N. Turner. Statically typed friendly functions via
partially abstract types. Technical Report ECS-LFCS-93-256, University of Edinburgh,
1993.

[Sny86] A. Snyder. Encapsulation and inheritance in object-oriented programming languages.

In Proc. 1st ACM Symp. on Object-Oriented Programming Systems, Languages, and
Applications, pages 38-46, October 1986.

[Tes85] L. Tesler. Object Pascal report. Technical Report 1, Apple Computer, 1985.

A Sample LOOM program for integer sets using modules

Wk

A row of “*’g indicates a module boundary. The intersection method of SetOfInt is destructive —

the receiver of the message is updated to hold the value of the intersection.
Interface IntOrdList;
type

OrdListType = ObjectType

first: proc();
next: proc();

off: func():Boolean; -- is current elt off end of 1list?
add: proc(Integer);
deleteCur: proc(); -- current is next elt after deleteCur

contains: func(Integer) :Boolean;
getCur: func():Integer
end;
OrdListClassType = ClassType ... end;
const
OrdListClass: OrdListClassType;
end;
s ok ko o ko o sk o o sk ok ke s ok sk o e ks s ke e ok sk o e ks s o ko e ok sk o o ko

Interface SetOflInt;

type

17

IntSetType <# ObjectType
add: proc(Integer);
remove: proc(Integer) ;
contains: func(Integer) :Boolean;
intersect: proc(MyType)
end;

const
function newSet(): IntSetType;
end; -- Interface Set0OfInt

3k 3k 3k 3k ok 3k 3k ok >k dk 3k ok 3k ok 3k 3k ok %k 3k 3k 5k >k dk dk 5k >k 3k ok ok 3k 5k >k k dk 3k 3k >k >k dk dk dk >k >k >k k 3k 5k %k %k %k %k 5k

Module Implements SetOfInt import IntOrdList;
-- SetOfInt is implemented as an ordered list in order to make the
-- methods find and intersect more efficient.

type

IntSetType = ObjectType include IntOrdList::0rdListType
remove :proc(Integer);
intersect: proc(MyType)

end;

ListSetClassType = ClassType include IntOrdList::0rdListClassType;
methods visible
remove :proc(Integer) ;
intersect: proc(MyType)
end;

const

ListSetClass = class inherit IntOrdList::0rdListClass
methods visible
procedure remove(elt:Integer) is
begin
if find(elt) then deleteCur()
end;
procedure intersect(other:MyType) is
begin
first();
other.first();
while (not off()) and (not other.off) do

18

if getCur() < other.getCur() then
deleteCur()
else if getCur() > other.getCur then
other.next ()
else
next () ;
other.next ()
end -- else if
end -- if
end -- while
while not off() do
deleteCur()
end -- while
end -- function
end; -- class

function newSet() :IntSetType;
begin
return new(ListSetClass)
end;

end —- Module

B Type formation and matching rules

There are rules which determine which type expressions are well-formed. While there is not room to
include these here, the well-formed type expressions are the following: a type variable or constant,
a function type of the form Func(c):7, a polymorphic function type Func(s <# o):7 where o is an
object type or type variable, a regular or polymorphic procedure type, a record type of the form
{mi:71;...;mp: 7}, an object type of the form ObjectType T (for 7 a record type), an expression
of the form ClassType(o,r) (for o and 7 record types) which represents the type of a class whose
instance variables have type o and methods have type 7, or an expression of the form #r (where
T is an object type or variable).

There are other types which are generated automatically by the system, but which the pro-
grammer is not allowed to write. They include reference types of the form ref 7 to represent the
type of a variable holding values of type 7, and an expression of the form VisObjType(o,r) (for o
and 7 record types) representing the internal view of an object whose instance variables have type
o and methods have type 7.

We say that {m;: 7, }1SIS extends {m;: 7;}1S'<F_ if n > k. Matching is only defined on object
types and variables.

Var(<#) CU{t<#T1}Ht<dr,

C F 7 <# Object

Refl(<#) Crr<dtr

19

Cho<#r
T
rans(<#) CUlt<#rlFi<dn’
o extends o', T extends T'
. b .T]
VisObjType(<#) C + VisObjType(o,) <# VisObjType(o’, ') ’
. T extends T'
ObjectType(<#)

C F ObjectType T <# ObjectType '’

C Selected type-checking rules for LOOM

C is a collection of type constraints of the form ¢ <# 7, while E is a collection of type assignments
to identifiers. We have omitted many of the rules which are the same as for PolyTOIL. In particular
we have omitted the rules for declarations and most commands aside from assignment.

4 C,Etx:refr, C,EF M:1
ssM C,Et+ z:= M: COMMAND

Var C,Etaz:r, if E(z)=1

C,EU{v:o} | Block:T
C, E I function (v: o) Block: (Func (o):7)

Function

where o may be of the form #-~.

CU{t<#~},E + Block:T

BdPolyFunc C, E - function (t <#) Block: (Func (t <#v):7)
C,EtF f:Func(o):T

C,EF-M:o

FuncAppl C,EF f(M):7
C,E & f: Func(t <#~v): 7

Cho<#y

BdPolyF A
dPolyFuncAppl C,Et flo]:7[o/t]
clV B+ a:0. CMETH pMETH | ..

Class , e ’ |

C, E I class(a, e): ClassType (o, T)

20

where C'V = C U {MyType <# ObjectType 7},
CMETH — IV { Self Type <¢ VisObjType (o, T)},
EMETH — B {self: SelfType, close: Func(SelfType): MyType}
Neither MyType nor SelfType may occur free in C or E.
o and 7 must both be record types, while the components of 7 must be function types.

C,E F c: ClassType(o,T)

Object C,E F new c: ObjectType T

s C,EtF o0:y, CF vy<gObjectType{m:7}
J C, E - o <= m:1[y/ MyType]

Msgit C,E |- 0: #O0bjectType{my:71;...;mp:Tp}

C,E o < m;: 1[#0bjectType{m1: 11;...;mpn: T}/ My Type]
Only if all occurrences of MyType in T are positive.

C,E I 0: # VisObjType({vi: 01;-..;vn:0n}, T)

InstVar
C,EF o ref o;
C,E I c: ClassType({v1:01; - . ;Um: Om }, {ma: 115 . .. ;mpn: T }),
CWV, EV¢ amy1:0me1, CV,EF a0y,
) CMETH,EMETH [enil: Tntl, CMETH,EMETH - 8’137']_
Inherits

C, E class inherit ¢ modifying v1, mq;
({v1 = al:01,Vm+1 = Amy1:Omi1)}, {m1 = €171, Mpt1 = €py1: Tny1}):
ClassType({vi:01;. .. ;Vmi1: Omt1), {mi: T1;mai 15 . o s Mpg1: Tt1})

where C'V = C U {MyType <# ObjectType {m1:T1;...;Mni1: Tns1}},
CMETH — IV { Self Type <¢# VisObjType({v1:01;. .. ; Vmi1: Omat}s
{ml: TLy« o3 Mpy1t Tn+1})}
EMETH — B {self: SelfType, close: Func(SelfType): MyType,
super: SelfType — {m1:71;...;mp:Tp}}
Neither MyType nor SelfType may occur free in C or E.

. C,EterT
Weakemng m
Cro<#t, C,ElFe#o
Subsump

C,EtF e #T

