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Abstract. As parallelism in microprocessors becomes mainstreampnegvam-
ming languages and environments are emerging to meet tHerules of parallel
programming. To support research on these languages, vdeee®ping a low-
level language infrastructure call@ilar (derived from Parallel Implementation
Language). Although Pillar programs are intended to beraatizally generated
from source programs in each parallel language, Pillarnarog can also be writ-
ten by expert programmers. The language is defined as a sshall extensions
to C. As a result, Pillar is familiar to C programmers, but sanportantly, it is
practical to reuse an existing optimizing compiler like gtfor Open64 [2] to
implement a Pillar compiler.

Pillar's concurrency features include constructs for dlieg, synchronization,
and explicit data-parallel operations. The threading tants focus on creat-
ing new threads only when hardware resources are idle, &dvaise executing
parallel work within existing threads, thus minimizingehd creation overhead.
In addition to the usual synchronization constructs, Pilialudes transactional
memory. Its sequential features include stack walkingpseéelass continua-
tions, support for precise garbage collection, tail calfe] seamless integration of
Pillar and legacy code. This paper describes the desigmapldinentation of the
Pillar software stack, including the language, compilentime, andchigh-level
converters(that translate high-level language programs into Pillagpams). It
also reports on early experience with three high-levellaggs that target Pillar.

1 Introduction

Industry and academia are reacting to increasing levelsacdviare concurrency in
mainstream microprocessors with new languages that makdlgdgprogramming ac-
cessible to a wider range of programmers. Some of thesedaeglare domain-specific
while others are more general, but successful languagethef gariety will share key
features: language constructs that allow easy extracfitigb levels of concurrency,
a highly-scalable runtime that efficiently maps concuryeanto available hardware
resources, a rich set of synchronization constructs likerés and transactions, and
managed features from modern languages such as garbagetioolland exceptions.
In addition, these languages will demand good sequenti&mpeance from an opti-
mizing compiler. Implementing such a language will reqursizable compiler and
runtime, possibly millions of lines of code.

To reduce this burden and to encourage experimentationpaithllel languages,
we are developing a language infrastructure called Pilariged from Parallel Imple-
mentation Language). We believe that many key parts of thepders and runtimes



for these languages will have strong similarities. Pilkatérs out these similarities and
provides a single set of components to ease the implementatid optimization of a

compiler and its runtime for any parallel language. The éadee of Pillar is to define a

low-level language and runtime that can be used to expressetuential and concur-
rency features of higher-level parallel languages. ThiaPihfrastructure consists of
three main components: the Pillar language, a Pillar caamghd the Pillar runtime.
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Fig. 1. The Pillar architecture and software stack.

To implement a parallel language using Pillar, a programiingr creates digh-
level convertel(see Fig. 1). This converter translates programs writtethénparallel
language into the Pillar language. Its main task is to cdra@rstructs of the parallel
language into Pillar constructs. The Pillar language iebam C and includes a set
of modern sequential and parallel features (see SectioBi2¢e the Pillar compiler
handles the tasks of code generation and traditional cemgjitimizations, creating a
high-level converter is significantly easier than creatingew parallel language com-
piler from scratch.

The second step is to create a runtime for the high-leveldagg that provides
the specialized support needed for features of the langwagesall this runtime the
language-specific runtime (LSR) to distinguish it from th#aP runtime. The LSR
could be written in Pillar and make use of Pillar construotscould be written in a
language such as C traditionally used for runtime implewrt@n. In either case, the
Pillar code generated by the converter can easily call thR inBere necessary. The
LSR can also make use of Pillar’'s runtime that, in additioaupporting the Pillar im-
plementation, provides a set of services for high-levejisges such as stack walking
and garbage collection (GC) support. The Pillar runtimaygfed on top of McRT, the
Multi-Core RunTime [3], which provides scheduling, synehization, and software
transactional memory services.

Once the converter and LSR are written, complete execigaiale be formed by
compiling the converted Pillar code with the Pillar compile produce object code,



and then linking this with the LSR, the Pillar runtime, andRIc The Pillar compiler
produces both object code and associated metadata. Thaslateis used by the Pil-
lar runtime to provide services such as stack walking and-sebenumeration, and
because of it, the code is said tofnanaged(Pillar also supports integration with non-
Pillar code, such as legacy code, which is said taibmanaged The Pillar compiler
controls the metadata format, and provides its ovatadata decodéibrary to interpret
it to the Pillar runtime. The metadata and decoder are aikedi into the executable.

The design and implementation of Pillar is still in its egplyases, and currently has
a few key limitations: most notably, a cache-coherent shanemory hardware model.
Another consequence is that we are not yet in a position toelmingful performance
analysis, so this paper does not present any performangéstéd/e intend to address
these issues in the future, and we also hope to increasetfe odhigh-level languages
that can target Pillar.

The following sections focus on the Pillar language, coerpdnd runtime.

2 ThePillar language

The Pillar language has several key design principlest, Riis a compiler target lan-
guage, with the goal of mapping any parallel language ontarRihile maintaining
that language’s semantics. As such, Pillar cannot incledeifes that vary across high-
level languages, like object models and type-safety rias:, C#, and Java, for ex-
ample, are too high-level to be effective target languagsegheir object models and
type-safety rules are not appropriate for many languagestefore, of necessity, Pil-
lar is a fairly low-level language. Although most Pillar grams will be automatically
generated, expert programmers must be able to directlyecRilar programs. As a
result, assembly and bytecode languages are too low-leca they are difficult even
for experts to use. Although inspired B¢- [4, 5], we decided to define Pillar asset
of extensions to Gecause then we could utilize existing optimizing C compite get
quality implementations of Pillar quickly.

Since the Pillar language is based on C, type safety pregesfithe source paral-
lel language must be enforced by the high-level convertarekample, array bounds
checks might be implemented in Pillar using a combinatioexglicit tests and con-
ditional branches. Similarly, null-dereference chechkage-by-zero checks, enforcing
data privacy, and restricting undesired data accesseshaukine at a level above the
Pillar language by the high-level converter. One notabtepkon is that we are work-
ing on annotations to express immutability and disambigaaif memory references.

Second, Pillar must provide support for key sequentialfiestof modern program-
ming languages. Examples include garbage collection {fégedly, the ability to iden-
tify live roots on stack frames), stack walking (e.qg., focegtion propagation), proper
tail calls (important when compiling functional language&cond-class continuations
(e.g., for exception propagation and backtracking), apatility to make calls between
managed Pillar code and unmanaged legacy code.

Third, Pillar must also support key concurrency featurgsaséllel languages, such
as parallel thread creation, transactions, data-parmietations, and futures. Fig. 2



summarizes the syntax of the Pillar features added to then@ukge. These features
are described in the following sections.

Sequential constructs

Concurrency constructs

| Feature | Syntax example |[Feature] Syntax example
Second-class|continuation k(a, b, c): Pcall |pcall(aff) foo(a, b, ¢);
continuations |cut to k(x, y, z); Prscall |prscall(aff) foo(a, b, c);
Alternate foo()also cuts to ki, k2; Futures|fcall(aff, &st) foo(a, b, )
control flow |foo() also unwinds to k3, k4; ftouch(&st);

foo() never returns; fwait(&st);
Tail call tailcall foo(); Trans- |TRANSACTION(k) {
Spans span TAG value { --- } actions
Virtual stack |VSE(k) { --- continuation k(reason):
and destructors continuation k(target): if (reason==RETRY)

cut to target; else if (reason==ABORT)

}
GC referencesref obyj; }
Managed/ #pragma managed(off)
unmanaged |#include<stdio.l>
calls #pragma managed(on)

printf(- - -);

Fig. 2. Pillar syntactic elements.

2.1 Sequential features

Second-class continuation¥his mechanism is used to jump back to a point in an
older stack frame and discard intervening stack framedlaito C's setjmp/longjmp
mechanism. The point in the older stack frame is called aicoation, and is declared
by the continuation keyword; the jumping operation is called a cut and allows
multiple arguments to be passed to the target continuaionany function call in
Pillar, if the target function might ultimately cut to somentinuation defined in the
calling function rather than returning normally, then thadtion call must be annotated
with all such continuations (these can be thought of astaizédte return points) so that
the compiler can insert additional control flow edges to kagtmizations safe.

Virtual stack element®A VSE(virtual stack element) declaration associates a clean-
up task with a block of code. The “virtual stack” terminolagexplained in Section 5.2.
This cleanup task is executed whenever a cut attempts to puhpf the region of
code associated with the VSE. This mechanism solves a probith traditional stack
cutting (such as irfc-- ) where cuts do not compose well with many other operations.
For example, suppose that code executing within a tramsectits to some stack frame
outside the transaction. The underlying transactional orgrsystem would not get
notified and this is sure to cause problems during subsegxetution. By using a



VSE per transaction, the transactional memory system larRd notified when a cut
attempts to bypass it and can run code to abort or restartahsdction. Since cuts in
Pillar compose well with all the features of Pillar, we caéimcomposable cuts

Stack walkingThe Pillar language itself has no keywords for stack walking the
Pillar runtime provides an interface for iterating over #tack frames of a particular
thread. Pillar has thalso unwinds to  annotation on a function call for providing
a list of continuations that can be accessed during a statkk Wais is useful for im-
plementing exception propagation using stack walkingsdgpical in C++, Java, and
C# implementations.

Spans:Spans are a mechanism for associating specific metadatacalitisites
within a syntactic region of code, which can be looked upmystack walking.

Root-set enumeratiofillar adds a primitive type calle@f thatis used for declar-
ing local variables that should be reported as roots to theagge collector. During stack
walking these roots can be enumerated. fiéfe type may also contain additional pa-
rameters that describe how the garbage collector shoudtlttie reference: e.g., as a
direct object pointer versus an interior pointer, as a wexlk,ror as a tagged union
that conditionally contains a root. These parameters haamning only to the garbage
collector, and are not interpreted by Pillar or its runtitfieefs escape to unmanaged
code, they must be wrapped and enumerated specially, sitmil@hat is done in Java
for JNI object handles.

Tail calls: The tailcall keyword before a function call specifies a proper tail
call: the current stack frame is destroyed and replacedtivéltallee’s new frame.

Calls between managed and unmanaged cddlePillar function declarations are
implicitly tagged with thepillar attribute. The Pillar compiler also understands a special
pragma that suppresses thiltar attribute on function declarations; this pragma is used
when including standard C header files or defining non-Fillactions! Calling con-
ventions and other interfacing depend on the presence enabf thepillar attribute
in both the caller and callee, and the Pillar compiler getesraalls accordingly.

Note that spans, second-class continuations, and sta&ingareC-- constructs
and are described in more detail in ie specification [6].

2.2 Concurrency features

Pillar currently provides three mechanisms for creating tagical threadspcall
prscall ,andfcall .Addingthepcall keyword in frontofa call to a function with
a void return type creates a new child thread, whose entmt jothe target function.
Execution in the original parent thread continues immetiyatith the statement fol-
lowing thepcall . Any synchronization or transfer of results between thettweads
should use global variables or parameters passed foctile target function.
Theprscall  keyword is semantically identical fucall , but implements par-
allel-ready sequential call7]. Prscalls  allow programs to specify potential paral-
lelism without incurring the overhead of spawning paratheeads if all processors are
already busy. Aprscall  initially starts running the child thread as a sequentidll ca

! One particularly pleasing outcome of this syntax is that agaal Pillar code and unmanaged
C code can coexist within the same source files.



(the parent is suspended). However, if a processor becaeestfcan start executing
the parent in parallel with the child. Thuystscalls  are nearly as cheap as normal
procedure calls, but take advantage of free processors thiegibecome available.

Thefcall construct can be used to parallelize programs that havaiceserial-
izable semantics. Thigall —annotation indicates that the call may be executed con-
currently with its continuation, while allowing the call b2 eagerly or lazily serialized
if the compiler or runtime deems it unprofitable to paratlelit. Thest parameter to
thefcall is a synchronization variable, called a future, that intiisahe status of
the call: emptyindicates that the call has not yet been starteyindicates that the
call is currently being computed, arfidll indicates that the call has completed. Two
forcing operations are provided for futurdsouch andfwait . If the future is full,
both return immediately; if the future is empty, both cause ¢all to be run sequen-
tially in the forcing thread; if the future is busfgvait  blocks until the call completes
while ftouch returns immediately. The serializability requirementdsoif, for each
future, its firstftouch orfwait can be safely replaced by a call to the future’s target
function.

Both prscall andfcall are geared toward an execution environment where
there is a great deal of available fine-grain concurrency) thie expectation that the
vast majority of calls can be executed sequentially withigirtparents’ context instead
of creating and destroying a separate thread.

These three keywords take an additioaffinity parameter [8] that helps the sched-
uler place related threads close to each other to, e.g.pimpnemory locality.

Pillar provides support for transactions. A syntactic Blo¢ code is marked as a
transaction, and transaction blocks may be nested. Witigitransaction block, trans-
actional memory accesses are specially annotated, andiawation is specified as the
“handler” for those situations where the underlying tratismal memory system needs
the program to respond to situations like a data conflict agea tetry.

The concurrency constructs described so far relate todigight thread-level par-
allelism. To support data parallelism, we intend to add @hjives [9] to Pillar. These
primitives express a variety of nested data-parallel ders, and their semantics allow
the compiler to combine and optimize multiple such operstio

3 Compiler/runtime architecture

The design of the Pillar language and runtime has severalecprences for the Pillar
compiler’s code generation. In this section, we discussesofithe key interactions
between the compiler-generated code and the runtime bgéttiag into more detailed
discussion of the compiler and the runtime in the followiegtfons.

We assume that threads are scheduled cooperatively: tatotriodically yield
control to each other by executing yield check operations. €&perience shows that
cooperative preemption offers several performance adgastover traditional preemp-
tive scheduling in multi-core platforms [3]. The Pillar cpiter is expected to generate
a yield check at each method entry and backward branch, akwelln technique that
ensures yielding within a bounded time. In addition to tiliesmanagement, cooper-



ative preemption is used on a running thread to get raceafreess to a target thread’s
stack, for operations like root-set enumeration and prsoatinuation stealing.

As we explain in Section 5, oyarscall  design allows threads to run out of stack
space. This requires compiled code to perform an explitiit Icheck in the method
prolog, jumping to a special stack extension routine iféisiinsufficient space for this
method’s stack frame. This strategy for inserting such@aeglimit and yield checks is
likely to have a noticeable performance impact; futureaesewill focus on mitigating
these costs.

Stack walking operations like span lookup, root-set enaiti@mn, and single-frame
unwinding require the compiler to generate additional mheta for each call site. One
approach would be to dictate a particular metadata fornatatPillar compiler must
adhere to. Another approach, which we adopted, is to letittae Bompiler decide on its
own metadata format, and to specify a runtime interface fetanhata-based operations.
This means that the Pillar compiler also needs to providevits library of metadata-
decoding operations to be linked into Pillar applicaticarsg the Pillar runtime calls
those routines as necessary. We favor this latter apprasdulse it gives the compiler
more flexibility in generating optimized code.

4 ThePillar compiler

We implemented our prototype Pillar compiler by modifyimgdl’s product C compiler.
The compiler consists of a front-end, middle-end, and bexud-all of which we modi-
fied to support Pillar. Fig. 3 shows the number of lines of sewode (LOC) changed or
added, as well as the percentage of those source lines cedtpahose of the original
code base. The front-end modifications are relatively srialited to recognizing new
Pillar lexical and syntax elements and translating themné high-level intermediate
representation (IR). In the middle- and back-end, our chamgcluded adding new at-
tributes and nodes to the existing IR and propagating theough compilation phases,
as well as generating additional metadata required at ro@. tin addition, we added
new internal data structures to accommodate Pillar coctst(e.g., continuations) and
the necessary new analyses and phases (e.g., GC-relatgsigina

Compiler phase|Pillar changes| Percentage of | GC-related
compiler code|Pillar changes|

Front-end 5Kloc 1.2% 5.8%

Middle-end 6 Kloc 0.5% 1.2%
Back-end 11 Kloc 4.2% 20.7%

Total 22 Kloc 1.3% 12.0%

Fig. 3. Compiler modification statistics.

Some Pillar constructs are implemented as simple mappinBslar runtime rou-
tines. These include some explicit Pillar language coostrsuch asutto , pcall



prscall ,andfcall , as well as implicit operations such as stack limit chedesks
extension, yield checks, and managed and unmanaged iwassithe compiler may
partially or fully inline calls to the runtime routines to prove performance. Fig. 4
gives an example showing how the compiler deals with somkesfd constructs:

1. The compiler calculates the function’s frame size andegaes the stack limit
check and extension in the prolog (line 5).

2. For cooperative scheduling, the compiler needs to géméhna yield check in the
prolog and at loop back-edges (line 5 & 11).

3. For Pillar concurrency constructsdall , prscall , andfcall ), the compiler
maps them to corresponding Pillar runtime interface fumgi(line 9).

4. When calling unmanaged C functions, the compiler autmallit generates the
transition call to the runtime routinatinvokeUnmanaged  (line 10).

1 #pragma managed(off)
2 #include <stdio.h>
3 #pragma managed(on)

Stack check & extend | 4 o )
{5 void pillar_main()
Thread yield 16
7 int i
prtPeall — |8 for (1=0;i<10;i++){
Auto generated 9 peall(i) task(i);
prtinvokeUnmanaged — [ 10——printf(“Hello pillarhn”);
. 1y
Thread yield [ 12}

Fig. 4. A Pillar example.

Other Pillar constructs required deeper compiler char@estinuation data struc-
tures must be allocated on the stack and initialized at tipecgpiate time. The con-
tinuation code itself must have @ntinuation prologthat fixes up the stack after a
cut operation and copies continuation arguments to the ptdtes. Continuations
also affect intra-method control flow and register allomatdecisions. Th&SE and
TRANSACTIONonstructs require control-flow edges into and out of théorepeing
split so that a VSE is always pushed upon entry and poppedexbfthe push and pop
operations are implemented as inlinable calls to the Rillatime). For every call site,
the compiler must generate metadata to support runtimk si@&ing operations, such
as unwinding a single frame, producing span data, and phogltiee set of live GC ref-
erences. Tracking live GC references constitutes the meassive set of changestoa C
compiler, as the newef type must be maintained through all IR generation and opti-
mization phases. GC-related changes account for about 289 Billar modifications
in the back-end, and a very small fraction of the front-endl maiddle-end changes.

Some Pillar constructs need special treatment when implgnggfunction inlining.
First, the compiler cannot inline functions containtagcall . Second, if the com-
piler decides to inline a call, and that call site containglieit or implicit also cuts



to andalso unwindsto  annotations, then all call sites within the inlined method
inherit these annotations. (Impligitso cutsto  annotations arise from calls inside a
VSEor TRANSACTIONonstruct—there is an implicit cut edge to the destructor co
tinuation.) Third, the compiler needs to maintain extraadata to support intra-frame
unwinding, to ensure that the stack trace looks identigamess of inlining decisions.

Even though some deep compiler changes were required, waesareed that the
changes only amounted to about 1-2% of the code base of gfagtimizing produc-
tion C compiler, and that they preserved the compilersiti@uhal optimizations> Of
those changes, about 12% overall were related to GC, whitleisingle most inva-
sive Pillar feature to implement. We believe that Pillar o could be added to other
optimizing compilers at a similarly low cost.

One limitation of basing the Pillar compiler on an existiagde C compiler is that
we are constrained to using Pillar constructs that can leglfithto C. It would be hard,
for example, for us to support struct layout control or nplétireturn values. The more
non-C features we choose to support, the more work we wouwddr i modifying
the compiler to support them. We believe we have chosen amabte point in that
spectrum for the design of Pillar.

5 ThePillar runtime

The Pillar runtime (PRT) provides services such as stackingroot-set enumeration,
parallel calls, stack management, and virtual stack suppa@ompiled Pillar code and
to an LSR. It is built on top of McRT [3], which the PRT relies pnmarily for its
scheduling and synchronization services, as well as itsvaoé transactional memory
implementation [10]. The PRT interface is nearly indepenaé the underlying hard-
ware: its architecture-specific properties include regssin the stack frame information
returned by the stack walking support, and the machine wped $he remainder of this
section provides some details on how the PRT supports i#cest

5.1 Stack walking and root-set enumeration

The PRT provides support for walking the stack of a threademdnerating the GC
roots in its frames. To do this, PRT functions are called tmferatively) suspend the
target thread, read the state of its topmost managed frémme repeatedly step to the
next older frame until no frames remain. At each frame, ofinections can access that
frame’s instruction pointer, callee-saved registers,@@doots. An additional function
enumerates any roots that may be present in the thread’s.VSEs

Stack walking is complicated by the need to unwind in the gmes of interleaved
managed and unmanaged frames. The PRT does not presumeetstand the layout
of unmanaged stack frames, which may vary from compiler tmpiter. Instead, it
uses theVSE mechanism to mark contiguous regions of the stack correpgro
unmanaged code, and skips over the entire region duringnaing.

2 Note, however, that a couple of optimization phases haveetbeen made Pillar-safe, and
are currently disabled.



5.2 Composable Cuts

The PRT provides the implementation of composable cutss@logperate much like
simple cuts but execute any destructor or cleanup opesibimtervening VSES.

Each thread contains\artual stackof VSEs, in which the thread explicitly main-
tains a pointer to the virtual stack top, and each VSE costaiink to the next VSE on
the stack. The continuation data structure also contaiist &os the virtual stack top.
The PRT provides interfaces to push and pop VSEs. When ancatitbn is created,
the current virtual stack top is stored in the continuatlaater, if a cut is made to this
continuation, the PRT compares the current virtual staplatgainst the value saved in
the target continuation. If these are the same, the PRT dgstlgf to the target con-
tinuation. If they differ, one or more intervening frameguée cleanup, and the PRT
instead cuts directly to the destructor of the topmost VSEhervirtual stack, passing
the original target continuation as an argument. When e&ih destructor is executed,
it does its cleanup, removes itself from the virtual stablent does another cut to the
original target continuation passed to the destructors Shguence continues until the
target continuation is reached.

5.3 Prscalls

The Pillar compiler translates @grscall  into a call to the PRT’s prscall interface
function. This function pushes a prscall VSE onto the virgiack, copies arguments,
and calls the prscall’s child. Thus the child immediatebrtst executing sequentially.
Later, an idle thread looking for work may steal the remairadé¢he parent’s execution
(unfortunately also called the parent’s “continuationy)setting a continuation-stolen
flag and restarting the parent. When the child terminateshétks the continuation-
stolen flag to determine whether to return to the parent omiply exit because the
continuation was stolen.

Our prscall  design has interesting implications for stack managem#&hen
a prscall  continuation is stolen, the stack becomes split betweeménent and
child threads, with the parent and child each owning oneigoats half. Since a stack
can contain an arbitrary number of actpescalls , each of which can be stolen, a
stack can become subdivided arbitrarily finely, leaving#us with tiny stacks that will
quickly overflow. To deal with this, the Pillar runtime allsva thread to allocate a new
“extension” stack (or “stacklet”) to hold newer stack frane

The PRT provides a stack extension wrapper that allocateswvastack (with an
initial reference count of one), calls the target functiangl deallocates the stack when
the function returns. The stack extension wrapper alsogaialVSE whose destructor
ensures that the stack will be properly deallocated in tlemesf a cut operation. To
support stack sharing, each full stack contains a referenget word indicating how
many threads are using a portion of the stack.

Logically, eachprscall  results in a new thread, regardless of whether the child
runs sequentially or in parallel with its parent. When mangdocks, those threads
should have distinct and persistent thread identifiersréagnt problems with the same
logical thread acquiring a lock in the parent under one thiBeand releasing it under a
different ID (the same is true fgycall andfcall ). Each thread’s persistent logical



ID is stored in thread-local storage, and locking data stines must be modified to
use the logical thread ID instead of a low-level thread IDisTlbgical thread ID is
constructed simply as the address of a part of the threads$ roent pcall or prscall
VSE. As such, the IDs are unique across all logical threanid, persistent over the
lifetimes of the logical threads.

54 Fcalls

The Pillar compiler translates doall  into a call to the PRT'’s future creation func-
tion. This function creates a future consisting of a stateisl fiempty/busy/full) and a
“thunk” that contains the future’s arguments and functiomger, and adds the future
to the current processor’s future queue. Subsequentlgdflao ftouch orfwait is
made and the future’s status is empty, it is immediately eteztin the current thread.

At startup, the PRT creates one future pool thread for eagicdb processor and
pins each thread to the corresponding processor. MoretheRRT creates a future
queue for each future pool thread. A future pool thread taesin futures from its own
queue, but if the queue is empty, it will try to steal futuresfi other queues to balance
system load.

Once the future has been evaluated, the future’s thunkgpoigino longer needed.
To reclaim these, the PRT represents futures using a thunktste and a separate
status structure. These point to each other until the thsigkaluated, after which the
thunk memory is released. The memory for the status streicsuunder the control of
the Pillar program, which may allocate the status strudtupdaces such as the stack,
the malloc heap, or the GC heap. We use this two-part steiciithat the key part
of the future structure may be automatically managed by Ben@ile minimizing the
PRT'’s knowledge of the existence or implementation of the GC

6 Experienceusing Pillar

This section describes our experience using Pillar to impla& three programming
languages having a range of different characteristicss& lenguages are Java, IBM's
X10, and an implicitly-parallel functional language.

6.1 Compiling Javato Pillar

As part of our initial efforts, we attempted to validate thesrall Pillar design through
a simple Java-to-Pillar converter (JPC), leveraging olstig Java execution environ-
ment, the Open Runtime Platform (ORP) [11]. Given a tracéheflava classes and
methods encountered during the execution of a programpP8eg&nerates Pillar code
for each method from its bytecodes in the method’s Java filass

The resulting code exercises many Pillar features. Fiasg Yariables of reference
types are declared using tihef primitive type. Second, spans are used to map Pil-
lar functions to Java method identifiers, primarily for thegose of generating stack
traces. They are also used, in conjunction withdale unwinds to  annotation,
to represent exception regions and handlers. Third, whexxeeption is thrown, ORP



uses Pillar runtime functions to walk the stack and find aatlét handler, in the form
of analso unwinds to  continuation. When the continuation is found, ORP sim-
ply invokes acut to operation. Fourth, VSEs are used for synchronized methods.
Java semantics require that when an exception is throwrapagtchronized method,
the lock is released before the exception handler beginginghsonized method is
wrapped inside a VSE whose cleanup releases the lock. Bétla, threads are started
via thepcall construct. Sixth, Pillar's managed/unmanaged transtene used for
implementing JNI calls and other calls into the ORP virtuakimne.

Although several Pillar features were not exercised by B@, it was still effective
in designing and debugging the Pillar software stack, paldrly the Pillar compiler
that was subjected to hundreds of thousands of lines of #P€rgted code.

6.2 Compiling X10to Pillar

X10 is a new object-oriented parallel language designetifgr-performance comput-
ing being developed by IBM as part of the DARPA HPCS progra®).[it is similar to
Java but with changes and extensions for high-performaanadiel programming. It in-
cludes asynchronous threads, multidimensional arragss#ictional memory, futures,
a notion of locality (places), and distribution of largealaets.

We selected X10 because it contains a number of paralletremts not in our other
efforts, such as places, data distributions, and clocksaMéewant to experiment with
thread affinity, data placement, optimizing for localitpdescheduling. X10, unlike our
other languages, is a good language in which to do this exgeeitiation.

We currently compile X10 by combining IBM’s open-sourceargfnce implemen-
tation of X10 [13] with the Java-to-Pillar converter. We af#e to compile and execute
a number of small X10 programs, and this has substantiadiyoésed Pillar beyond that
of the Java programs. In the future we will experiment wifinéfy and data placement.

6.3 Compiling a concurrent functional language

Pillar is also being used as the target of a compiler for a nqeeemental functional
language. Functional languages perform computation ingela side-effect-free fash-
ion, which means that a great deal of the computational wor& program can be
executed concurrently with minimal or no programmer inégrion [14, 15].

Previous work has compiled functional languages to langsiagch as C [16], Java
byte codes [17, 18], and the Microsoft Common Language Re(CLR) [19]. These
attempts reported benefits such as interoperability, pititia and ease of compiler
development. However, they have also noted the mismatott@sebn the functional
languages and the different target languages. The inahilitontrol the object model
in Java and CLR, the lack of proper tail calls, the restritdiof type safety in Java and
CLR, and the inability to do precise garbage collection radlyin C, all substantially
complicate compiler development and hurt performanceefitial code.

C-- and Pillar are designed to avoid these problems and proviéasy-to-target
platform for functional languages. Like the Java-to-Ritlanverter, our experience with
the functional language showed Pillar to be an excellegetdanguage. Pillar’s lack



of a fixed object model, its support for proper tail calls, #sdoot-set enumeration all
made implementing our functional language straightfodvatso, since Pillar is a set
of C extensions, we implement most of our lowest IR directl{Cgpreprocessor macros,
and generating Pillar from this IR is straightforward. We @aclude C header files for
standard libraries and components (e.g., the garbagectmljeoded in C, and Pillar
automatically interfaces the Pillar and C code. Pillar'scsel-class continuations are
used to provide a specialized control-flow construct of &mglage. The stack walking-
based exceptions of Java and CLR would be too heavyweighhiermpurpose, and
C's setjmp/longjmp mechanism is difficult to use correcthdainders performance.
Implementing accurate GC in the converter is as easy as iratfeeto-Pillar converter—
simply a matter of marking roots asf s and using the Pillar stack walking and root-set
enumeration support.

7 Redated work

The closest language effort to PillarGs- [4—6].C-- is intended as a low-level target
language for compilers—it has often been described as adiplerassembler”. Al-
most all Pillar features can be expresse®in , but we designed Pillar to be slightly
higher level tharC-- . Pillar includes, for exampleef s and threads instead of @s-
would) just the mechanisms to implement them. We also desiffillar as extensions
to C, rather than directly using-- , to leverage existing C compilers.

LLVM [20] is another strong and ongoing research effort wdgsal is to provide
a flexible compiler infrastructure with a common compilemg&t language. LLVM'’s
design is focused on supporting different compiler optaticms, while Pillar is aimed
at simplifying new language implementations, in part byegrating readily into an
existing highly-optimizing compiler. Comparing langudgatures, the most important
differences between Pillar and LLVM are that LLVM lacks sedeclass continuations,
spans, pcalls, prscalls, and fcalls.

C# and CLI [21, 22] are often used as intermediate languagresoimpiling high-
level languages, and early on we considered them as thefbaBi#lar. However, they
lack second-class continuations, spans, prscalls, ad.fEarthermore, they are too
restrictive in that they impose a specific object model apetgafety rules.

Pillar uses ideas from or similar to other projects seekmgxploit fine-grained
parallelism without creating too many heavyweight thre&illar's prscalls are taken
directly from Goldstein’s parallel-ready sequential sdlf], which were designed to
reduce the cost of creating threads yet make effective ugeoakessors that become
idle during execution. Also, like Cilk [23] and Lea’s Javak§oin framework [24],
Pillar uses work stealing to make the most use of availabtdvere resources and
to balance system load. Furthermore, during prscall caation stealing, Pillar tries
to steal the earlier (deeper) continuations as Cilk doesgesseizing large amounts of
work tends to reduce later stealing costs. Pillar’s futorplementation differs from the
lazy futures of Zhang et al. [25], which are implemented gsiflazy-thread creation
scheme similar to Pillar’s prscalls. Since Pillar supptsh prscalls and a separate
future pool-based implementation, it will be interestingcbmpare the performance of
both schemes for implementing futures.



8 Summary

We have described the design of the Pillar software infuastire, consisting of the
Pillar language, the Pillar compiler, and the Pillar rurdinas well as the high-level
converter that translates programs from a high-level fEri@nguage into Pillar. By
defining the Pillar language as a small set of extensionst€tlanguage, we were able
to create an optimizing Pillar compiler by modifying only28 of an existing optimiz-
ing C compiler. Pillar's thread-creation constructs, daed for a high-level converter
that can find a great deal of concurrency opportunities, ptienized for sequential ex-
ecution to minimize thread creation and destruction c&Slisur's sequential constructs,
many of which are taken froi@-- , have proven to be a good target for languages with
modern features, such as Java and functional languages.

Our future work includes adding support for nested datallehi@erations [9] to
efficiently allow parallel operations over collections @ftd. In addition, although we
currently assume a shared global address space, we plaretigate Pillar support for
distributed address spaces and message passing.

We are still in the early stages of using Pillar, but our eigrere to date is positive—
it has simplified our implementation of high-level paraleehguages, and we expect it
to significantly aid experimentation with new parallel laiage features and implemen-
tation techniques.
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