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Abstract. As parallelism in microprocessors becomes mainstream, newprogram-
ming languages and environments are emerging to meet the challenges of parallel
programming. To support research on these languages, we aredeveloping a low-
level language infrastructure calledPillar (derived from Parallel Implementation
Language). Although Pillar programs are intended to be automatically generated
from source programs in each parallel language, Pillar programs can also be writ-
ten by expert programmers. The language is defined as a small set of extensions
to C. As a result, Pillar is familiar to C programmers, but more importantly, it is
practical to reuse an existing optimizing compiler like gcc[1] or Open64 [2] to
implement a Pillar compiler.
Pillar’s concurrency features include constructs for threading, synchronization,
and explicit data-parallel operations. The threading constructs focus on creat-
ing new threads only when hardware resources are idle, and otherwise executing
parallel work within existing threads, thus minimizing thread creation overhead.
In addition to the usual synchronization constructs, Pillar includes transactional
memory. Its sequential features include stack walking, second-class continua-
tions, support for precise garbage collection, tail calls,and seamless integration of
Pillar and legacy code. This paper describes the design and implementation of the
Pillar software stack, including the language, compiler, runtime, andhigh-level
converters(that translate high-level language programs into Pillar programs). It
also reports on early experience with three high-level languages that target Pillar.

1 Introduction

Industry and academia are reacting to increasing levels of hardware concurrency in
mainstream microprocessors with new languages that make parallel programming ac-
cessible to a wider range of programmers. Some of these languages are domain-specific
while others are more general, but successful languages of either variety will share key
features: language constructs that allow easy extraction of high levels of concurrency,
a highly-scalable runtime that efficiently maps concurrency onto available hardware
resources, a rich set of synchronization constructs like futures and transactions, and
managed features from modern languages such as garbage collection and exceptions.
In addition, these languages will demand good sequential performance from an opti-
mizing compiler. Implementing such a language will requirea sizable compiler and
runtime, possibly millions of lines of code.

To reduce this burden and to encourage experimentation withparallel languages,
we are developing a language infrastructure called Pillar (derived from Parallel Imple-
mentation Language). We believe that many key parts of the compilers and runtimes



for these languages will have strong similarities. Pillar factors out these similarities and
provides a single set of components to ease the implementation and optimization of a
compiler and its runtime for any parallel language. The coreidea of Pillar is to define a
low-level language and runtime that can be used to express the sequential and concur-
rency features of higher-level parallel languages. The Pillar infrastructure consists of
three main components: the Pillar language, a Pillar compiler, and the Pillar runtime.
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Fig. 1. The Pillar architecture and software stack.

To implement a parallel language using Pillar, a programmerfirst creates ahigh-
level converter(see Fig. 1). This converter translates programs written inthe parallel
language into the Pillar language. Its main task is to convert constructs of the parallel
language into Pillar constructs. The Pillar language is based on C and includes a set
of modern sequential and parallel features (see Section 2).Since the Pillar compiler
handles the tasks of code generation and traditional compiler optimizations, creating a
high-level converter is significantly easier than creatinga new parallel language com-
piler from scratch.

The second step is to create a runtime for the high-level language that provides
the specialized support needed for features of the language. We call this runtime the
language-specific runtime (LSR) to distinguish it from the Pillar runtime. The LSR
could be written in Pillar and make use of Pillar constructs,or could be written in a
language such as C traditionally used for runtime implementation. In either case, the
Pillar code generated by the converter can easily call the LSR where necessary. The
LSR can also make use of Pillar’s runtime that, in addition tosupporting the Pillar im-
plementation, provides a set of services for high-level languages such as stack walking
and garbage collection (GC) support. The Pillar runtime is layered on top of McRT, the
Multi-Core RunTime [3], which provides scheduling, synchronization, and software
transactional memory services.

Once the converter and LSR are written, complete executables can be formed by
compiling the converted Pillar code with the Pillar compiler to produce object code,



and then linking this with the LSR, the Pillar runtime, and McRT. The Pillar compiler
produces both object code and associated metadata. This metadata is used by the Pil-
lar runtime to provide services such as stack walking and root-set enumeration, and
because of it, the code is said to bemanaged. (Pillar also supports integration with non-
Pillar code, such as legacy code, which is said to beunmanaged.) The Pillar compiler
controls the metadata format, and provides its ownmetadata decoderlibrary to interpret
it to the Pillar runtime. The metadata and decoder are also linked into the executable.

The design and implementation of Pillar is still in its earlyphases, and currently has
a few key limitations: most notably, a cache-coherent shared-memory hardware model.
Another consequence is that we are not yet in a position to do meaningful performance
analysis, so this paper does not present any performance results. We intend to address
these issues in the future, and we also hope to increase the range of high-level languages
that can target Pillar.

The following sections focus on the Pillar language, compiler, and runtime.

2 The Pillar language

The Pillar language has several key design principles. First, it is a compiler target lan-
guage, with the goal of mapping any parallel language onto Pillar while maintaining
that language’s semantics. As such, Pillar cannot include features that vary across high-
level languages, like object models and type-safety rules.C++, C#, and Java, for ex-
ample, are too high-level to be effective target languages,as their object models and
type-safety rules are not appropriate for many languages. Therefore, of necessity, Pil-
lar is a fairly low-level language. Although most Pillar programs will be automatically
generated, expert programmers must be able to directly create Pillar programs. As a
result, assembly and bytecode languages are too low-level since they are difficult even
for experts to use. Although inspired byC-- [4, 5], we decided to define Pillar asa set
of extensions to Cbecause then we could utilize existing optimizing C compilers to get
quality implementations of Pillar quickly.

Since the Pillar language is based on C, type safety properties of the source paral-
lel language must be enforced by the high-level converter. For example, array bounds
checks might be implemented in Pillar using a combination ofexplicit tests and con-
ditional branches. Similarly, null-dereference checks, divide-by-zero checks, enforcing
data privacy, and restricting undesired data accesses mustbe done at a level above the
Pillar language by the high-level converter. One notable exception is that we are work-
ing on annotations to express immutability and disambiguation of memory references.

Second, Pillar must provide support for key sequential features of modern program-
ming languages. Examples include garbage collection (specifically, the ability to iden-
tify live roots on stack frames), stack walking (e.g., for exception propagation), proper
tail calls (important when compiling functional languages), second-class continuations
(e.g., for exception propagation and backtracking), and the ability to make calls between
managed Pillar code and unmanaged legacy code.

Third, Pillar must also support key concurrency features ofparallel languages, such
as parallel thread creation, transactions, data-paralleloperations, and futures. Fig. 2



summarizes the syntax of the Pillar features added to the C language. These features
are described in the following sections.

Sequential constructs
Feature Syntax example

Second-class continuation k(a, b, c):
continuations cut to k(x, y, z);
Alternate foo() also cuts to k1, k2;
control flow foo() also unwinds to k3, k4;

foo() never returns;
Tail call tailcall foo();
Spans span TAG value { · · · }

Virtual stack VSE(k) { · · ·
and destructors continuation k(target):

· · ·
cut to target;

}

GC referencesref obj;
Managed/ #pragma managed(off)
unmanaged #include<stdio.h>
calls #pragma managed(on)

· · ·
printf(· · ·);

Concurrency constructs
Feature Syntax example

Pcall pcall(aff) foo(a, b, c);
Prscall prscall(aff) foo(a, b, c);
Futures fcall(aff, &st) foo(a, b, c);

ftouch(&st);
fwait(&st);

Trans- TRANSACTION(k) {
actions · · ·

continuation k(reason):
if (reason==RETRY)

· · ·
else if (reason==ABORT)

· · ·
}

Fig. 2. Pillar syntactic elements.

2.1 Sequential features

Second-class continuations:This mechanism is used to jump back to a point in an
older stack frame and discard intervening stack frames, similar to C’s setjmp/longjmp
mechanism. The point in the older stack frame is called a continuation, and is declared
by thecontinuation keyword; the jumping operation is called a cut and allows
multiple arguments to be passed to the target continuation.For any function call in
Pillar, if the target function might ultimately cut to some continuation defined in the
calling function rather than returning normally, then the function call must be annotated
with all such continuations (these can be thought of as all alternate return points) so that
the compiler can insert additional control flow edges to keepoptimizations safe.

Virtual stack elements:A VSE(virtual stack element) declaration associates a clean-
up task with a block of code. The “virtual stack” terminologyis explained in Section 5.2.
This cleanup task is executed whenever a cut attempts to jumpout of the region of
code associated with the VSE. This mechanism solves a problem with traditional stack
cutting (such as inC-- ) where cuts do not compose well with many other operations.
For example, suppose that code executing within a transaction cuts to some stack frame
outside the transaction. The underlying transactional memory system would not get
notified and this is sure to cause problems during subsequentexecution. By using a



VSE per transaction, the transactional memory system in Pillar is notified when a cut
attempts to bypass it and can run code to abort or restart the transaction. Since cuts in
Pillar compose well with all the features of Pillar, we call themcomposable cuts.

Stack walking:The Pillar language itself has no keywords for stack walking, but the
Pillar runtime provides an interface for iterating over thestack frames of a particular
thread. Pillar has thealso unwinds to annotation on a function call for providing
a list of continuations that can be accessed during a stack walk. This is useful for im-
plementing exception propagation using stack walking, as is typical in C++, Java, and
C# implementations.

Spans:Spans are a mechanism for associating specific metadata withcall sites
within a syntactic region of code, which can be looked up during stack walking.

Root-set enumeration:Pillar adds a primitive type calledref that is used for declar-
ing local variables that should be reported as roots to the garbage collector. During stack
walking these roots can be enumerated. Theref type may also contain additional pa-
rameters that describe how the garbage collector should treat the reference: e.g., as a
direct object pointer versus an interior pointer, as a weak root, or as a tagged union
that conditionally contains a root. These parameters have meaning only to the garbage
collector, and are not interpreted by Pillar or its runtime.If refs escape to unmanaged
code, they must be wrapped and enumerated specially, similar to what is done in Java
for JNI object handles.

Tail calls: The tailcall keyword before a function call specifies a proper tail
call: the current stack frame is destroyed and replaced withthe callee’s new frame.

Calls between managed and unmanaged code:All Pillar function declarations are
implicitly tagged with thepillar attribute. The Pillar compiler also understands a special
pragma that suppresses thepillar attribute on function declarations; this pragma is used
when including standard C header files or defining non-Pillarfunctions.1 Calling con-
ventions and other interfacing depend on the presence or absence of thepillar attribute
in both the caller and callee, and the Pillar compiler generates calls accordingly.

Note that spans, second-class continuations, and stack walking areC-- constructs
and are described in more detail in theC-- specification [6].

2.2 Concurrency features

Pillar currently provides three mechanisms for creating new logical threads:pcall ,
prscall , andfcall . Adding thepcall keyword in front of a call to a function with
a void return type creates a new child thread, whose entry point is the target function.
Execution in the original parent thread continues immediately with the statement fol-
lowing thepcall . Any synchronization or transfer of results between the twothreads
should use global variables or parameters passed to thepcall target function.

Theprscall keyword is semantically identical topcall , but implements apar-
allel-ready sequential call[7]. Prscalls allow programs to specify potential paral-
lelism without incurring the overhead of spawning parallelthreads if all processors are
already busy. Aprscall initially starts running the child thread as a sequential call

1 One particularly pleasing outcome of this syntax is that managed Pillar code and unmanaged
C code can coexist within the same source files.



(the parent is suspended). However, if a processor becomes free, it can start executing
the parent in parallel with the child. Thus,prscalls are nearly as cheap as normal
procedure calls, but take advantage of free processors whenthey become available.

The fcall construct can be used to parallelize programs that have certain serial-
izable semantics. Thefcall annotation indicates that the call may be executed con-
currently with its continuation, while allowing the call tobe eagerly or lazily serialized
if the compiler or runtime deems it unprofitable to parallelize it. Thest parameter to
the fcall is a synchronization variable, called a future, that indicates the status of
the call:emptyindicates that the call has not yet been started,busyindicates that the
call is currently being computed, andfull indicates that the call has completed. Two
forcing operations are provided for futures:ftouch andfwait . If the future is full,
both return immediately; if the future is empty, both cause the call to be run sequen-
tially in the forcing thread; if the future is busy,fwait blocks until the call completes
while ftouch returns immediately. The serializability requirement holds if, for each
future, its firstftouch or fwait can be safely replaced by a call to the future’s target
function.

Both prscall and fcall are geared toward an execution environment where
there is a great deal of available fine-grain concurrency, with the expectation that the
vast majority of calls can be executed sequentially within their parents’ context instead
of creating and destroying a separate thread.

These three keywords take an additionalaffinityparameter [8] that helps the sched-
uler place related threads close to each other to, e.g., improve memory locality.

Pillar provides support for transactions. A syntactic block of code is marked as a
transaction, and transaction blocks may be nested. Within the transaction block, trans-
actional memory accesses are specially annotated, and a continuation is specified as the
“handler” for those situations where the underlying transactional memory system needs
the program to respond to situations like a data conflict or a user retry.

The concurrency constructs described so far relate to lightweight thread-level par-
allelism. To support data parallelism, we intend to add Ct primitives [9] to Pillar. These
primitives express a variety of nested data-parallel operations, and their semantics allow
the compiler to combine and optimize multiple such operations.

3 Compiler/runtime architecture

The design of the Pillar language and runtime has several consequences for the Pillar
compiler’s code generation. In this section, we discuss some of the key interactions
between the compiler-generated code and the runtime beforegetting into more detailed
discussion of the compiler and the runtime in the following sections.

We assume that threads are scheduled cooperatively: that they periodically yield
control to each other by executing yield check operations. Our experience shows that
cooperative preemption offers several performance advantages over traditional preemp-
tive scheduling in multi-core platforms [3]. The Pillar compiler is expected to generate
a yield check at each method entry and backward branch, a well-known technique that
ensures yielding within a bounded time. In addition to timeslice management, cooper-



ative preemption is used on a running thread to get race-freeaccess to a target thread’s
stack, for operations like root-set enumeration and prscall continuation stealing.

As we explain in Section 5, ourprscall design allows threads to run out of stack
space. This requires compiled code to perform an explicit limit check in the method
prolog, jumping to a special stack extension routine if there is insufficient space for this
method’s stack frame. This strategy for inserting such copious limit and yield checks is
likely to have a noticeable performance impact; future research will focus on mitigating
these costs.

Stack walking operations like span lookup, root-set enumeration, and single-frame
unwinding require the compiler to generate additional metadata for each call site. One
approach would be to dictate a particular metadata format that a Pillar compiler must
adhere to. Another approach, which we adopted, is to let the Pillar compiler decide on its
own metadata format, and to specify a runtime interface for metadata-based operations.
This means that the Pillar compiler also needs to provide itsown library of metadata-
decoding operations to be linked into Pillar applications,and the Pillar runtime calls
those routines as necessary. We favor this latter approach because it gives the compiler
more flexibility in generating optimized code.

4 The Pillar compiler

We implemented our prototype Pillar compiler by modifying Intel’s product C compiler.
The compiler consists of a front-end, middle-end, and back-end, all of which we modi-
fied to support Pillar. Fig. 3 shows the number of lines of source code (LOC) changed or
added, as well as the percentage of those source lines compared to those of the original
code base. The front-end modifications are relatively small, limited to recognizing new
Pillar lexical and syntax elements and translating them into the high-level intermediate
representation (IR). In the middle- and back-end, our changes included adding new at-
tributes and nodes to the existing IR and propagating them through compilation phases,
as well as generating additional metadata required at run time. In addition, we added
new internal data structures to accommodate Pillar constructs (e.g., continuations) and
the necessary new analyses and phases (e.g., GC-related analysis).

Compiler phase Pillar changes Percentage of GC-related
compiler code Pillar changes

Front-end 5 Kloc 1.2% 5.8%
Middle-end 6 Kloc 0.5% 1.2%
Back-end 11 Kloc 4.2% 20.7%

Total 22 Kloc 1.3% 12.0%

Fig. 3. Compiler modification statistics.

Some Pillar constructs are implemented as simple mappings to Pillar runtime rou-
tines. These include some explicit Pillar language constructs, such ascut to , pcall ,



prscall , andfcall , as well as implicit operations such as stack limit checks, stack
extension, yield checks, and managed and unmanaged transitions. The compiler may
partially or fully inline calls to the runtime routines to improve performance. Fig. 4
gives an example showing how the compiler deals with some of these constructs:

1. The compiler calculates the function’s frame size and generates the stack limit
check and extension in the prolog (line 5).

2. For cooperative scheduling, the compiler needs to generate the yield check in the
prolog and at loop back-edges (line 5 & 11).

3. For Pillar concurrency constructs (pcall , prscall , andfcall ), the compiler
maps them to corresponding Pillar runtime interface functions (line 9).

4. When calling unmanaged C functions, the compiler automatically generates the
transition call to the runtime routineprtInvokeUnmanaged (line 10).

1 #pragma managed(off)
2 #include <stdio.h>
3 #pragma managed(on)
4 
5 void pillar_main()
6 {
7   int i;
8   for (i = 0; i < 10; i++) {
9     pcall(i) task(i);

10     printf(“Hello pillar!\n”);
11   }
12 }Thread yield

Auto generated 
prtInvokeUnmanaged

prtPcall

Thread yield

Stack check & extend

Fig. 4. A Pillar example.

Other Pillar constructs required deeper compiler changes.Continuation data struc-
tures must be allocated on the stack and initialized at the appropriate time. The con-
tinuation code itself must have acontinuation prologthat fixes up the stack after a
cut operation and copies continuation arguments to the right places. Continuations
also affect intra-method control flow and register allocation decisions. TheVSE and
TRANSACTIONconstructs require control-flow edges into and out of the region being
split so that a VSE is always pushed upon entry and popped uponexit (the push and pop
operations are implemented as inlinable calls to the Pillarruntime). For every call site,
the compiler must generate metadata to support runtime stack walking operations, such
as unwinding a single frame, producing span data, and producing the set of live GC ref-
erences. Tracking live GC references constitutes the most invasive set of changes to a C
compiler, as the newref type must be maintained through all IR generation and opti-
mization phases. GC-related changes account for about 20% of the Pillar modifications
in the back-end, and a very small fraction of the front-end and middle-end changes.

Some Pillar constructs need special treatment when implementing function inlining.
First, the compiler cannot inline functions containingtailcall . Second, if the com-
piler decides to inline a call, and that call site contains explicit or implicit also cuts



to andalso unwinds to annotations, then all call sites within the inlined method
inherit these annotations. (Implicitalso cuts to annotations arise from calls inside a
VSEor TRANSACTIONconstruct—there is an implicit cut edge to the destructor con-
tinuation.) Third, the compiler needs to maintain extra metadata to support intra-frame
unwinding, to ensure that the stack trace looks identical regardless of inlining decisions.

Even though some deep compiler changes were required, we arepleased that the
changes only amounted to about 1–2% of the code base of a highly-optimizing produc-
tion C compiler, and that they preserved the compiler’s traditional optimizations.2 Of
those changes, about 12% overall were related to GC, which isthe single most inva-
sive Pillar feature to implement. We believe that Pillar support could be added to other
optimizing compilers at a similarly low cost.

One limitation of basing the Pillar compiler on an existing large C compiler is that
we are constrained to using Pillar constructs that can be fitted onto C. It would be hard,
for example, for us to support struct layout control or multiple return values. The more
non-C features we choose to support, the more work we would incur in modifying
the compiler to support them. We believe we have chosen a reasonable point in that
spectrum for the design of Pillar.

5 The Pillar runtime

The Pillar runtime (PRT) provides services such as stack walking, root-set enumeration,
parallel calls, stack management, and virtual stack support to compiled Pillar code and
to an LSR. It is built on top of McRT [3], which the PRT relies onprimarily for its
scheduling and synchronization services, as well as its software transactional memory
implementation [10]. The PRT interface is nearly independent of the underlying hard-
ware: its architecture-specific properties include registers in the stack frame information
returned by the stack walking support, and the machine word size. The remainder of this
section provides some details on how the PRT supports its services.

5.1 Stack walking and root-set enumeration

The PRT provides support for walking the stack of a thread andenumerating the GC
roots in its frames. To do this, PRT functions are called to (cooperatively) suspend the
target thread, read the state of its topmost managed frame, then repeatedly step to the
next older frame until no frames remain. At each frame, otherfunctions can access that
frame’s instruction pointer, callee-saved registers, andGC roots. An additional function
enumerates any roots that may be present in the thread’s VSEs.

Stack walking is complicated by the need to unwind in the presence of interleaved
managed and unmanaged frames. The PRT does not presume to understand the layout
of unmanaged stack frames, which may vary from compiler to compiler. Instead, it
uses theVSE mechanism to mark contiguous regions of the stack corresponding to
unmanaged code, and skips over the entire region during unwinding.

2 Note, however, that a couple of optimization phases have notyet been made Pillar-safe, and
are currently disabled.



5.2 Composable Cuts

The PRT provides the implementation of composable cuts. These operate much like
simple cuts but execute any destructor or cleanup operations of intervening VSEs.

Each thread contains avirtual stackof VSEs, in which the thread explicitly main-
tains a pointer to the virtual stack top, and each VSE contains a link to the next VSE on
the stack. The continuation data structure also contains a slot for the virtual stack top.
The PRT provides interfaces to push and pop VSEs. When a continuation is created,
the current virtual stack top is stored in the continuation.Later, if a cut is made to this
continuation, the PRT compares the current virtual stack top against the value saved in
the target continuation. If these are the same, the PRT cuts directly to the target con-
tinuation. If they differ, one or more intervening frames require cleanup, and the PRT
instead cuts directly to the destructor of the topmost VSE onthe virtual stack, passing
the original target continuation as an argument. When each VSE destructor is executed,
it does its cleanup, removes itself from the virtual stack, then does another cut to the
original target continuation passed to the destructor. This sequence continues until the
target continuation is reached.

5.3 Prscalls

The Pillar compiler translates aprscall into a call to the PRT’s prscall interface
function. This function pushes a prscall VSE onto the virtual stack, copies arguments,
and calls the prscall’s child. Thus the child immediately starts executing sequentially.
Later, an idle thread looking for work may steal the remainder of the parent’s execution
(unfortunately also called the parent’s “continuation”) by setting a continuation-stolen
flag and restarting the parent. When the child terminates, itchecks the continuation-
stolen flag to determine whether to return to the parent or to simply exit because the
continuation was stolen.

Our prscall design has interesting implications for stack management.When
a prscall continuation is stolen, the stack becomes split between theparent and
child threads, with the parent and child each owning one contiguous half. Since a stack
can contain an arbitrary number of activeprscalls , each of which can be stolen, a
stack can become subdivided arbitrarily finely, leaving threads with tiny stacks that will
quickly overflow. To deal with this, the Pillar runtime allows a thread to allocate a new
“extension” stack (or “stacklet”) to hold newer stack frames.

The PRT provides a stack extension wrapper that allocates a new stack (with an
initial reference count of one), calls the target function,and deallocates the stack when
the function returns. The stack extension wrapper also pushes a VSE whose destructor
ensures that the stack will be properly deallocated in the event of a cut operation. To
support stack sharing, each full stack contains a referencecount word indicating how
many threads are using a portion of the stack.

Logically, eachprscall results in a new thread, regardless of whether the child
runs sequentially or in parallel with its parent. When managing locks, those threads
should have distinct and persistent thread identifiers, to prevent problems with the same
logical thread acquiring a lock in the parent under one thread ID and releasing it under a
different ID (the same is true forpcall andfcall ). Each thread’s persistent logical



ID is stored in thread-local storage, and locking data structures must be modified to
use the logical thread ID instead of a low-level thread ID. This logical thread ID is
constructed simply as the address of a part of the thread’s most recent pcall or prscall
VSE. As such, the IDs are unique across all logical threads, and persistent over the
lifetimes of the logical threads.

5.4 Fcalls

The Pillar compiler translates anfcall into a call to the PRT’s future creation func-
tion. This function creates a future consisting of a status field (empty/busy/full) and a
“thunk” that contains the future’s arguments and function pointer, and adds the future
to the current processor’s future queue. Subsequently, if acall to ftouch or fwait is
made and the future’s status is empty, it is immediately executed in the current thread.

At startup, the PRT creates one future pool thread for each logical processor and
pins each thread to the corresponding processor. Moreover,the PRT creates a future
queue for each future pool thread. A future pool thread triesto run futures from its own
queue, but if the queue is empty, it will try to steal futures from other queues to balance
system load.

Once the future has been evaluated, the future’s thunk portion is no longer needed.
To reclaim these, the PRT represents futures using a thunk structure and a separate
status structure. These point to each other until the thunk is evaluated, after which the
thunk memory is released. The memory for the status structure is under the control of
the Pillar program, which may allocate the status structurein places such as the stack,
the malloc heap, or the GC heap. We use this two-part structure so that the key part
of the future structure may be automatically managed by the GC while minimizing the
PRT’s knowledge of the existence or implementation of the GC.

6 Experience using Pillar

This section describes our experience using Pillar to implement three programming
languages having a range of different characteristics. These languages are Java, IBM’s
X10, and an implicitly-parallel functional language.

6.1 Compiling Java to Pillar

As part of our initial efforts, we attempted to validate the overall Pillar design through
a simple Java-to-Pillar converter (JPC), leveraging our existing Java execution environ-
ment, the Open Runtime Platform (ORP) [11]. Given a trace of the Java classes and
methods encountered during the execution of a program, the JPC generates Pillar code
for each method from its bytecodes in the method’s Java classfile.

The resulting code exercises many Pillar features. First, Java variables of reference
types are declared using theref primitive type. Second, spans are used to map Pil-
lar functions to Java method identifiers, primarily for the purpose of generating stack
traces. They are also used, in conjunction with thealso unwinds to annotation,
to represent exception regions and handlers. Third, when anexception is thrown, ORP



uses Pillar runtime functions to walk the stack and find a suitable handler, in the form
of analso unwinds to continuation. When the continuation is found, ORP sim-
ply invokes acut to operation. Fourth, VSEs are used for synchronized methods.
Java semantics require that when an exception is thrown pasta synchronized method,
the lock is released before the exception handler begins. A synchronized method is
wrapped inside a VSE whose cleanup releases the lock. Fifth,Java threads are started
via thepcall construct. Sixth, Pillar’s managed/unmanaged transitions are used for
implementing JNI calls and other calls into the ORP virtual machine.

Although several Pillar features were not exercised by the JPC, it was still effective
in designing and debugging the Pillar software stack, particularly the Pillar compiler
that was subjected to hundreds of thousands of lines of JPC-generated code.

6.2 Compiling X10 to Pillar

X10 is a new object-oriented parallel language designed forhigh-performance comput-
ing being developed by IBM as part of the DARPA HPCS program [12]. It is similar to
Java but with changes and extensions for high-performance parallel programming. It in-
cludes asynchronous threads, multidimensional arrays, transactional memory, futures,
a notion of locality (places), and distribution of large data sets.

We selected X10 because it contains a number of parallel constructs not in our other
efforts, such as places, data distributions, and clocks. Wealso want to experiment with
thread affinity, data placement, optimizing for locality, and scheduling. X10, unlike our
other languages, is a good language in which to do this experimentation.

We currently compile X10 by combining IBM’s open-source reference implemen-
tation of X10 [13] with the Java-to-Pillar converter. We areable to compile and execute
a number of small X10 programs, and this has substantially exercised Pillar beyond that
of the Java programs. In the future we will experiment with affinity and data placement.

6.3 Compiling a concurrent functional language

Pillar is also being used as the target of a compiler for a new experimental functional
language. Functional languages perform computation in a largely side-effect-free fash-
ion, which means that a great deal of the computational work in a program can be
executed concurrently with minimal or no programmer intervention [14, 15].

Previous work has compiled functional languages to languages such as C [16], Java
byte codes [17, 18], and the Microsoft Common Language Runtime (CLR) [19]. These
attempts reported benefits such as interoperability, portability, and ease of compiler
development. However, they have also noted the mismatches between the functional
languages and the different target languages. The inability to control the object model
in Java and CLR, the lack of proper tail calls, the restrictions of type safety in Java and
CLR, and the inability to do precise garbage collection naturally in C, all substantially
complicate compiler development and hurt performance of the final code.

C-- and Pillar are designed to avoid these problems and provide an easy-to-target
platform for functional languages. Like the Java-to-Pillar converter, our experience with
the functional language showed Pillar to be an excellent target language. Pillar’s lack



of a fixed object model, its support for proper tail calls, andits root-set enumeration all
made implementing our functional language straightforward. Also, since Pillar is a set
of C extensions, we implement most of our lowest IR directly as C preprocessor macros,
and generating Pillar from this IR is straightforward. We can include C header files for
standard libraries and components (e.g., the garbage collector) coded in C, and Pillar
automatically interfaces the Pillar and C code. Pillar’s second-class continuations are
used to provide a specialized control-flow construct of the language. The stack walking-
based exceptions of Java and CLR would be too heavyweight forthis purpose, and
C’s setjmp/longjmp mechanism is difficult to use correctly and hinders performance.
Implementing accurate GC in the converter is as easy as in theJava-to-Pillar converter—
simply a matter of marking roots asref s and using the Pillar stack walking and root-set
enumeration support.

7 Related work

The closest language effort to Pillar isC-- [4–6].C-- is intended as a low-level target
language for compilers—it has often been described as a “portable assembler”. Al-
most all Pillar features can be expressed inC-- , but we designed Pillar to be slightly
higher level thanC-- . Pillar includes, for example,ref s and threads instead of (asC--
would) just the mechanisms to implement them. We also designed Pillar as extensions
to C, rather than directly usingC-- , to leverage existing C compilers.

LLVM [20] is another strong and ongoing research effort whose goal is to provide
a flexible compiler infrastructure with a common compiler target language. LLVM’s
design is focused on supporting different compiler optimizations, while Pillar is aimed
at simplifying new language implementations, in part by integrating readily into an
existing highly-optimizing compiler. Comparing languagefeatures, the most important
differences between Pillar and LLVM are that LLVM lacks second-class continuations,
spans, pcalls, prscalls, and fcalls.

C# and CLI [21, 22] are often used as intermediate languages for compiling high-
level languages, and early on we considered them as the basisfor Pillar. However, they
lack second-class continuations, spans, prscalls, and fcalls. Furthermore, they are too
restrictive in that they impose a specific object model and type-safety rules.

Pillar uses ideas from or similar to other projects seeking to exploit fine-grained
parallelism without creating too many heavyweight threads. Pillar’s prscalls are taken
directly from Goldstein’s parallel-ready sequential calls [7], which were designed to
reduce the cost of creating threads yet make effective use ofprocessors that become
idle during execution. Also, like Cilk [23] and Lea’s Java fork/join framework [24],
Pillar uses work stealing to make the most use of available hardware resources and
to balance system load. Furthermore, during prscall continuation stealing, Pillar tries
to steal the earlier (deeper) continuations as Cilk does, since seizing large amounts of
work tends to reduce later stealing costs. Pillar’s future implementation differs from the
lazy futures of Zhang et al. [25], which are implemented using a lazy-thread creation
scheme similar to Pillar’s prscalls. Since Pillar supportsboth prscalls and a separate
future pool-based implementation, it will be interesting to compare the performance of
both schemes for implementing futures.



8 Summary

We have described the design of the Pillar software infrastructure, consisting of the
Pillar language, the Pillar compiler, and the Pillar runtime, as well as the high-level
converter that translates programs from a high-level parallel language into Pillar. By
defining the Pillar language as a small set of extensions to the C language, we were able
to create an optimizing Pillar compiler by modifying only 1–2% of an existing optimiz-
ing C compiler. Pillar’s thread-creation constructs, designed for a high-level converter
that can find a great deal of concurrency opportunities, are optimized for sequential ex-
ecution to minimize thread creation and destruction costs.Pillar’s sequential constructs,
many of which are taken fromC-- , have proven to be a good target for languages with
modern features, such as Java and functional languages.

Our future work includes adding support for nested data parallel operations [9] to
efficiently allow parallel operations over collections of data. In addition, although we
currently assume a shared global address space, we plan to investigate Pillar support for
distributed address spaces and message passing.

We are still in the early stages of using Pillar, but our experience to date is positive—
it has simplified our implementation of high-level parallellanguages, and we expect it
to significantly aid experimentation with new parallel language features and implemen-
tation techniques.
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