Measuring the Haskell Gap

Leaf Petersen Todd A. Anderson Hai Liu Neal Glew
Intel Labs
leaf.petersen@gmail.com, {todd.a.anderson, hai.liu}@intel.com, aglew@acm.org

Abstract

Papers on functional language implementations frequently set the goal of achieving performance “comparable to C”, and sometimes report results comparing benchmark results to concrete C implementations of the same problem. A key pair of questions for such comparisons is: what C program to compare to, and what C compiler to compare with? In a 2012 paper, Satish et al [9] compare naive serial C implementations of a range of throughput-oriented benchmarks to best-optimized implementations parallelized on a six-core machine and demonstrate an average $23 \times$ (up to $53 \times$) speedup. Even accounting for thread parallel speedup, these results demonstrate a substantial performance gap between naive and tuned C code. In this current paper, we choose a subset of the benchmarks studied by Satish et al to port to Haskell. We measure performance of these Haskell benchmarks compiled with the standard Glasgow Haskell Compiler and with our experimental Intel Labs Haskell Research Compiler and report results as compared to our best reconstructions of the algorithms used by Satish et al. Results are reported as measured both on an Intel Xeon E5-4650 32-core machine, and on an Intel Xeon Phi co-processor. We hope that this study provides valuable data on the concrete performance of Haskell relative to C.

1. Introduction

It is often claimed that high-level languages provide greater programmer productivity at the expense of some performance; functional languages have been touted as providing reasonable parallel scalability without huge programmer effort at the loss of some sequential performance. Assessing these claims in general is difficult; instead, in this paper we provide a careful study of six benchmarks in Haskell reporting the sequential, parallel, and SIMD-vector performance in comparison to C.

We use C, as is often done in the literature, to represent what is possible with low-level high-performance languages. But this choice immediately raises the question “What C?”. In particular, how much programmer optimization is to be applied to the C program? And what compiler should the C code be compiled with? These concerns may seem minor, but they are not. In a 2012 paper [9] (henceforth “the ninja-gap paper”), Satish et al study a range of throughput-oriented benchmarks and demonstrate dramatic performance differences between naive implementations and the best-known hand-tuned implementations (an average of $23 \times$ speedup and up to $53 \times$). Moreover, they show that performance comparable to the best-in-class implementations can generally be achieved using relatively-straightforward language-level optimizations applied to the naive versions, combined with appropriate use of a good C compiler. These results suggest that the question “What C” is in fact critical to any such comparison.

We attempt to provide a very careful analysis of the relative performance of C and Haskell on six of these benchmarks, using both the standard Glasgow Haskell Compiler (GHC) and our experimental whole-program optimizing Haskell compiler, the Intel Labs Haskell Research Compiler (HRC). We do not claim that this analysis is the definitive study, nor that this analysis is the only way to do such a study. It is possible that better C programmers could improve on our reconstructions of the C benchmarks, and it is possible that better Haskell programmers could improve on our versions of the Haskell benchmarks. We have had to make choices as to how far outside of the space of idiomatic Haskell programs to go, and to what extent to use unsafe, non-standard, or experimental constructs (such as strictness annotations, explicit strictness (seq), unboxed vectors, and unsafe array subscripting). And of course, our resources for exploring these spaces are finite. Our goal then is not to be definitive, but to be transparent.

We believe that our results provide insights into Haskell performance. We show that Haskell can sometimes achieve performance comparable to best-in-class C, that Haskell can often achieve good parallel scalability with little programmer effort, and that Haskell can benefit from SIMD vectorization on some benchmarks. However, we also observe that Haskell performs badly on some benchmarks, and that good scalability is not enough to make up for poor sequential performance. We call the difference between the best performing (peak performance at any number of threads) C implementation and the best performing Haskell implementation, the “Haskell Gap.” On a 32 core machine, we observe a Haskell Gap for the GHC compiler on our selected benchmarks of between $1.72 \times$ and $82.9 \times$ slower. We show that compiling with HRC reduces the Haskell Gap to between $0.95 \times$ and $2.67 \times$. We also give measurements on a pre-production Intel Xeon Phi board, demonstrating a measured Haskell Gap with HRC compiled code of between $0.76 \times$ and $3.7 \times$. To the best of our knowledge, these are the first performance results for Haskell on the Xeon Phi processor.

1.1 Methodology: C

We are grateful to the authors of the ninja-gap paper for graciously providing us with access to archived versions of their C implementations, and for answering our questions in our attempts to reproduce their results. It is important to make clear that this cannot be considered a full reproduction of their work. Architects and compilers have changed significantly since the original code was written. New issues (such as, very notably, non-uniform memory-access) arise on the larger and newer machines which we are target-
ing. These are issues which the original code was not designed to address, and which we lack the time to fully address ourselves. As we will discuss further in Section 2, in places compiler technology has substantially narrowed the gap between naive and optimized algorithms. We have also, for various reasons including the need to run on Microsoft Windows, needed to modify some of their original C code. Any mistakes, anomalies or inconsistencies with the original work are most likely due to us.

1.2 Methodology: Floating Point
Floating-point semantics are a notoriously difficult issue. Floating-point arithmetic is generally not associative, and many identities which hold over the real numbers do hold for floating-point numbers in the sense that they may change the precision of the result. Whether this matters is very application dependent. For certain numeric applications in which numeric stability is a critical property of algorithms, predictable rounding semantics may be critical. On the other hand, in many graphics applications performance is critical and details of rounding is more or less irrelevant. For our measurements, we have chosen to give the compilers maximal freedom to optimize floating-point operations (the methodology used in the original ninja-gap paper). Other choices are reasonable. We discuss this further in Section 2.

1.3 Methodology: Haskell
Porting of the Haskell benchmarks was done by three of the authors, one of whom is a very experienced Haskell programmer, one of whom is very experienced with functional languages but less so with Haskell, and one of whom is a relative novice to functional programming. In all cases, mutual assistance in writing and tuning the benchmarks was provided. A broad goal of the porting effort was to remain more or less in the space of reasonably idiomatic Haskell. It is likely possible to achieve better performance on some of these benchmarks by essentially writing the C code in Haskell using IOREfs and unsafe malloc-ed byte arrays. We do not feel this style of programming is an interesting use of Haskell, and it does not reflect well on the goal of high-level programming in general. Where exactly the boundaries of idiomatic programming begin and end are entirely a matter of judgment. For example, we do make extensive use of strictness annotations and other non-standard GHC extensions to Haskell. We discuss particular choices in this regard in the discussion of each benchmark in Section 2.

In tuning the benchmarks, we profited significantly from being our own compiler developers. In particular, we were able to study the generated code of both GHC and our own compiler to better understand weaknesses in the generated code. These weaknesses could often be addressed by small changes in the source code. This technique would be much less accessible to other Haskell developers. We also made extensive use of the Intel VTune™ tool to understand and tune performance.

In an ideal world, we would have kept our compiler fixed over the course of this study. However, since our larger goal is the development of the compiler itself, this work necessarily was used to drive compiler development in the sense that weaknesses in the compiler revealed by the benchmarks were sometimes addressed in the compiler. The changes in the compiler were not done in an ad hoc manner simply to address one particular benchmark, but rather were generally beneficial optimizations. Nonetheless, this is a weak point from the standpoint of viewing this as a scientific performance study.

Our focus as a compiler development team is on our own compiler. We made reasonable efforts to select good optimization flags for GHC and to provide fair measurements. In some cases we have expended considerable effort to optimize the benchmarks to the benefit of GHC even when not required for our own compiler. However, it is possible that someone more familiar with the strengths and weaknesses of the GHC compiler might be able to improve upon the relative performance of GHC vs our compiler. The style of benchmark measured here is also particularly favorable to our compiler. We hope that these results will not be taken as a criticism of the GHC compiler, especially given that we rely essentially on GHC as a high-level optimizing front-end for our compiler.

As of this writing, we have only ported a subset of the benchmarks from the ninja-gap paper. This selection is not entirely random—the easier to port benchmarks were chosen for porting first, and the last remaining unported benchmarks seem likely to be the most difficult to get good performance on. The selection of benchmarks should if anything therefore be viewed as skewed in favor of Haskell.

1.4 HRC
HRC is discussed in detail elsewhere [6] and we only briefly describe it here. The compiler uses GHC as a front-end and intercepts the Core intermediate language before generation of spineless-tailless G-machine code. Core code for the entire program (including all libraries) is aggregated by our compiler in order to perform whole-program optimization. Some initial high-level optimization and transformation are performed before translation to a strict SSA-style internal representation in which most optimization is done. The backend of our compiler generates code in an extension of C called Pillar [1], which is then transformed to standard C code and compiled with the Intel C compiler or GCC. Our compiler performs a number of loop-based and representation-style optimizations as described elsewhere [6, 7]. In addition, SIMD vectorization is performed where applicable as described by Petersen et al [8].

HRC implements most of the functionality of the GHC system, and can correctly compile and run most of the nofib benchmark suite. The most notable known deficiencies in functionality are that:

1. Re-evaluating a thunk which exited with an exception will produce an error instead of re-raising the exception.
2. Asynchronous exceptions are not supported.

The first issue can be addressed but has not been a priority. Addressing it will likely have some adverse effect on performance of thunk intensive code, but is irrelevant to these benchmarks, which have no laziness in performance-critical sections. The second issue seems likely to be impossible to address given our language-agnostic runtime representation.

2. Benchmarks and Performance Analysis
We begin by describing qualitatively the benchmarks which we have chosen to port, and the manner in which we have chosen to port them. For each benchmark, the ninja-gap paper studied three implementations: a naive C implementation ("naive C"), a best-optimized implementation ("ninja C"), and an algorithmically tuned C version ("optimized C"). The naive C code for a given benchmark generally consisted of the "obvious" C implementation for that benchmark, with little thought given to performance tuning. The ninja code on the other hand consisted of deeply and carefully optimized code, using compiler intrinsics and pragmas as appropriate, validated to match the performance of the best published results for that problem. Finally, the optimized C code was developed by taking the naive C code and performing small, low-effort algorithmic improvements to produce C code comparable in performance to that of the ninja code. Very few programmers have the skill to produce ninja C; many more programmers have or can be taught the skills to produce optimized C. For more details about the algorithms and the C implementations upon which our C code is based, we refer the reader to the ninja-gap paper [9].
For our work, we have where possible reconstructed each of
the three C versions for each of the selected benchmarks, starting
from versions of the code used in the original ninja-gap paper. It is
important to note that since the ninja code was written for previous
architectures using (at times) hand-coded assembly or intrinsics, it
was explicitly not designed to be “future proof”. That is, unlike the
optimized C code which could be successfully retargeted to a new
architecture simply by passing different flags to the C compiler,
the ninja code would require hand re-coding and re-tuning. While
we have for some of these benchmarks attempted this re-coding,
we cannot claim to be ninja programmers, and so it is likely that
the ninja code that we measure no longer truly represents the best-
optimized code. Similarly, for the optimized C code, it is likely that
a small tuning effort comparable to that described in the ninja-gap
paper might give further performance improvements on machines
with non-uniform memory access (NUMA) behaviors such as those
on which we perform our measurements.

Given all this, we emphasize that the reader should interpret
our results not as situating Haskell relative to the absolute best C
versions, but rather as situating Haskell relative to a range of C
versions, from the fairly ordinary, to the very good, to the possibly
quite excellent. Nonetheless, for clarity and for consistency with
the ninja-gap paper, we continue to use the naive/optimized/ninja
terminology throughout the rest of the paper.

2.1 Performance analysis

For each benchmark, we follow the qualitative discussion with
quantitative measurements providing a comparison between the
different implemented versions of the benchmark. Generally we
analyze six different configurations: three C configurations and
three Haskell configurations. In a few cases some configurations are
not available or not reportable for reasons noted in the discussion.
The three C configurations are referred to throughout as C Naive,
C Opt, and C Ninja. For most benchmarks, we present HRC results
both with and without SIMD vectorization in order to provide
a useful baseline for comparison. In all of the graphs, the label
HRC refers to timings taken from code compiled without SIMD
vectorization, and the label HRC SIMD refers to timings taken
from code compiled with the SIMD vectorization optimization
enabled. We report results for GHC both with and without the
LLVM backend, labelling these results as GHC LLVM and GHC
respectively.

We analyze the performance of the benchmarks in terms of both
sequential performance and parallel speedup. For each benchmark
we present two charts: a chart showing sequential speedup relative
to the C naive configuration, and a chart showing parallel speedup
relative to the best-performing sequential algorithm. For the se-
quential performance chart, all numbers are normalized to C naive,
that is, for a given configuration, the height of the bar on the Y
axis is computed by dividing its run time by the run time of the C
naive configuration. Hence, lower is better on these charts. For the
parallel speedup charts, we show speedup relative to the best se-
quential configuration, whichever that is; generally, but not always
this configuration is the C ninja configuration. For a given configu-
ration, the X axis indicates the number of parallel threads run, and
the value on the Y axis is computed by dividing the run time of
the best sequential configuration on one thread by the run time of
the given configuration (on that number of threads). We have cho-

This number is calculated by dividing the fastest runtime for the
Haskell version (at any number of cores) by the fastest runtime for
any of the C versions (at any number of cores). This number gives
the slowdown (or speedup) factor of the Haskell code relative to the
best C, allowing for both sequential and parallel speedup.

All of the C programs measured in this paper were compiled
using the Intel C++ Compiler, version 13.1.2.190. All of the GHC
compiled Haskell programs were compiled with GHC version
7.6.1. When compiled with the LLVM backend, LLVM version 2.9
was used. For all GHC configurations, the “-optc-enable-unsafe-
fp-math” option was passed to GHC to permit unsafe floating-point
optimizations to be performed.

For all of the benchmarks, we report results as measured on an
codenamed Sandy Bridge) processors, each of which has 8 cores
for a total of 32 execution cores. Each core has 32 KB L1 data and
instruction caches and a 256 KB L2 cache. Each processor has a
20 MB L3 cache shared among 8 cores. All runs were performed
with hyperthreading off.

For each benchmark we also report results as measured on a
Xeon Phi 57 core co-processor. Benchmarks were run on the Xeon
Phi in native mode and did not involve the host CPU or the PCI
bus. The board we have access to is not a final production chip,
and may have additional idiosyncracies in addition to the odd core
count. Our support for the Xeon Phi is very preliminary and very
little performance analysis and tuning has been performed. The
vector support in particular is a very recent addition, and contains
a number of performance compromises for the sake of achieving
initial functionality. Nonetheless, we believe that these numbers
are interesting, measuring as they do the scalability of a Haskell
implementation on a machine with a very large number of cores. To
the best of our knowledge, these are the first Haskell performance
numbers reported for the Xeon Phi. There is no GHC version
available targeting Xeon Phi, and so we report Haskell numbers
using HRC only.

In general, the benchmarks investigated in this paper are nu-
merical and array or matrix oriented and are not heavy on object
allocation. Thus, they do not spend a significant amount of time
in garbage collection. However, as described in Section 2.4, the
artificial iteration mechanism of several of the C benchmarks un-
fairly forces Haskell to allocate some objects not required in C and
we thus incur some small additional garbage collection overhead.
While garbage collection was not a significant factor in this study,
it should be noted that these benchmarks may not be representa-
tive of typical Haskell programs. Therefore, it may be the case that
other kinds of benchmarks would exhibit a larger performance gap
between C and Haskell due to the differing approaches to memory
management taken by the two languages.

2.2 NBody

The NBody benchmark is an implementation of the naive quadratic
algorithm for computing the aggregate forces between N point
masses. Given an array of bodies described as a coordinate in
space with a mass, the sum of the forces induced by the pair
wise interactions between each body and all of the other bodies is
computed and placed in an output array.

The translation of this benchmark to Haskell was entirely
straightforward using the Repa libraries [2, 4, 5]. Bodies are repre-

this measure reflects absolute performance; in all cases, a higher
value on the Y axis on such a graph indicates better absolute per-
felmanship (something that is not necessarily the case with graphs of
self speedup). Higher is better on these charts.

For each benchmark, we also calculate the Haskell Gap between
the best performing C code and the best performing Haskell code.
a parallel map over the points. At each point, another map is performed to compute an intermediate vector containing the pair-wise interactions between the given point and all other points. Finally, a fold is performed over this intermediate vector summing the forces computed by each pair-wise interaction. The computation of the pair wise interaction between two points is computed as follows:

\[
\text{pointForce} :: \text{Point} \rightarrow \text{Point} \rightarrow \text{Force}
\]

\[
\text{pointForce} (x_i, y_i, z_i, _) (x_j, y_j, z_j, m_j) =
\]

\[
\begin{align*}
\text{dx} &= x_j - x_i \\
\text{dy} &= y_j - y_i \\
\text{dz} &= z_j - z_i \\
\text{eps_sqr} &= 0.01 \\
\text{gamma}_0 &= \text{dx}^2 + \text{dy}^2 + \text{dz}^2 + \text{eps_sqr} \\
\text{s}_0 &= m_j / (\text{gamma}_0 \times \sqrt{\text{gamma}_0}) \\
\text{r} &= (\text{r}_0, \text{r}_1, \text{r}_2)
\end{align*}
\]

The ninja version of this benchmark was originally implemented using SSE intrinsics, and modified for this paper to use AVX intrinsics. We measure the Haskell code as compiled with HRC, and with GHC and GHC LLVM. The blocking version of the C code that we implemented showed no additional performance or scalability on this architecture, and so we elide those results. The benchmarks were run simulating 150,000 bodies.

The relative sequential performance is given in Figure 1. The C compiler is able to do an excellent job of vectorizing and optimizing this benchmark. The optimized C version runs in approximately 1/3 of the time of the naive C version, and is only 18% slower than the ninja code. The GHC compiled code is slower than the naive C code by a factor of 3.37×, and is 31× slower than the ninja code. The GHC LLVM code is only 1.36× slower than the naive code, or 12.45× slower than the ninja code.

HRC produces code that is significantly faster than the naive C code, primarily because of its ability to vectorize the code. It remains a factor of 2.6× slower than the optimized C versions however, due to the C compiler’s ability to eliminate the division and square root instructions from the inner loop as discussed above. On the one hand, this is a disappointing result in that there is a substantial gap between the Haskell code and the C code. However, if we find it encouraging that Haskell code can be optimized to the point that machine level peephole optimizations can make this substantial a difference.

It is worth emphasizing here that the relative performance is highly dependent not just on the choice of compilers and algorithms, but even on the flags passed to the compiler. Passing options requiring the C compiler to maintain the source level precision of the division and square root operations results in this optimization being disabled, reducing the performance of the optimized C code to almost exactly that of the Intel compiled Haskell code. Moreover, in order to vectorize the code both the C compiler and HRC must re-associate floating-point operations which does not preserve source level semantics. Consequently, forcing fully strict floating-point operations to be performed by hand.
point semantics reduces performance even further for both the C and the Haskell code.

Figure 2 shows the speedup of the various configurations relative to the ninja sequential performance. As we will do throughout, we do not show results for the standard GHC configuration on the scalability graphs, since the results do not differ in any interesting way from the GHC LLVM results (other than performing slightly worse). Similarly, we elide the HRC non-SIMD results from these graphs. Note that the lower slopes of the GHC and HRC lines on this scalability graph do not reflect poorer scalability relative to the C code. All of the configurations shown here scale almost perfectly relative to their own sequential performance, in each case reaching approximately a 28\times self speedup on 32 processors. Since the ninja C code scales equally well however, it maintains its performance advantage throughout the range of processor counts. The final Haskell Gap for GHC LLVM is 12.5\times, and for HRC is 2.67\times.

2.2.2 Xeon Phi Performance

Figure 3 shows the sequential runtime relative to the C Naive configuration. The optimized C configuration runs in 5\% of the time of the naive C version—a substantial increase in performance. The blocked version of this code again gives no significant benefits over the unrolled version. Our compiler is able to vectorize this code for reasonably good speedup, albeit not as significant a drop as with the C code. The use of prefetch instructions in the vector loop provided significant speedups on this benchmark on the Xeon Phi.

Figure 4 shows the speedup of the configurations at 1 to 57 threads over the optimized C sequential runtime. Much as with the Black Scholes code discussed below, the optimized C code scales poorly past 27 processors, with performance dropping off significantly at higher numbers of processors. The naive C code however scales fairly linearly. This suggests the possibility that the optimized C code is saturating an architectural resource (e.g. bus bandwidth) and causing contention at high core counts, but we have not definitively confirmed this. The HRC SIMD configuration exhibits a somewhat similar scalability curve. The final Haskell Gap for this benchmark is 1.25\times.

2.3 1D convolution

The 1D convolution benchmark performs a one-dimensional convolution on a large array of complex numbers (the real and imaginary components of which are represented as single precision floating-point numbers). The kernel for the convolution contains 8192 floating-point elements. The main computation of the simple naive C version consists of a doubly nested loop iterating over the elements of the main array in the outer loop, and for each element iterating over the stencil kernel in the inner loop. The naive version uses an array of struct (AOS) representation for the elements, passes arrays as function arguments, and accumulates the result of the inner iteration directly into the output array. Note that the input arrays are padded to avoid the need for conditionals to deal with boundary conditions. The optimized version passes arrays through globals, aligns all arrays, uses a struct of array representation, and accumulates into temporary variables. The C compiler is able to vectorize this code very successfully.

The ninja version of this code uses the same basic representations as the optimized C version. The original version was implemented using SSE intrinsics, and modified to use AVX intrinsics for this paper. The inner loop in this version is hand-unrolled four times.

Translating this code to Haskell presented a somewhat interesting challenge. While the Repa libraries include support specifically for stencils [4], this support is somewhat preliminary and is limited to two dimensional arrays. Only small fixed size stencils are fully optimized. However, after some brief experimentation a performant implementation was obtained by using the Repa extract function to obtain a slice of the input array which was then zipped together with the stencil array using the convolution function, and then reduced with a fold. It was somewhat surprising to us that GHC was able to successfully eliminate the implied intermediate arrays with this, but combined with our backend optimizations we were indeed able to obtain excellent code. The code of the stencil computation is as follows:

```
convolve0 :: Complex -> Float -> Complex
convolve0 (r, i) s = (r*s - i*s, r*s + i*s)
```

```
convolve :: Int -> Stencil -> Data -> Data
convolve size stencil input = output
where
  genOne tag =
    let
      elements = R.extract tag stencilShape input
      partials = R.zipWith convolve0 elements stencil
      in R.foldAllS complexPlus (0.0, 0.0) partials
  shape = R.Z R.. size :: R.DIM1
  [output] = R.computeUnboxedP $ R.fromFunction shape genOne
```

In our original implementation of this benchmark, we used a Repa "delayed" representation for the stencil array. The GHC optimizer is able to fold the implementation of the stencil array into the inner loop, with the result that the stencil array is never explicitly represented in memory. It can be argued that this is an unfair comparison, since the C implementation is not able to do this optimization, and since this optimization cannot be done for all stencils. However, it was felt that the fact that a general purpose library is able to exploit these special cases is a benefit of the Haskell approach, and
that artificially disabling the Haskell optimization was equally unfair. Consequently we have chosen to report results for the benchmark as originally written. Measurements taken with the stencil array forced to an explicit representation show approximately a 30% mark as originally written. Measurements taken with the stencil array fair. Consequently we have chosen to report results for the benchmark.

Surprisingly, GHC itself initially performed extremely poorly on this benchmark despite successfully eliminating the intermediate arrays (so poorly that measurements could not reasonably be taken). Inspection of the Core IR showed that the GHC generated code contained allocation in the inner loop which our compiler was able to eliminate. With the addition of some additional strictness annotations, we were able to eliminate this allocation and improve the GHC performance significantly. We report results here with these strictness annotations in place—however, they provide no additional performance benefit for our compiler over the original implementation.

2.3.1 CPU Performance

The relative sequential performance is given in Figure 5. All numbers were taken by convolving 3,000,000 elements. For this benchmark, the optimized C code runs in approximately 16% of the time taken by the naive C program. This is a good example of the hazards of comparison to C that we wish to highlight in this paper. Even keeping the C compiler fixed, we observe an 84% reduction in run time simply through the use of a few quite small changes to the source code. The ninja code (written using AVX intrinsics) does not perform as well as the code optimized by the C compiler. This may reflect either improvements in the C compiler since the original ninja-gaps paper was written, or changes in the underlying architecture, or both. On the latter point, it is important to note that the ninja versions of these benchmarks, written using intrinsics, are explicitly not “future proof”, that is, they are highly tuned to an explicit architecture and instruction set.

2.3.2 Xeon Phi Performance

For the 1D convolution benchmark, the naive, ninja, and optimized C configurations were compiled for the Xeon Phi. Figure 7 shows the sequential runtime relative to the C Naive configuration. The optimized C configuration is able to take good advantage of the wide vector instruction set, running in 4% of the time of the naive C configuration (slightly better than the ninja performance). The Haskell code is also able to beat the naive C configuration, running in 73% of the time without vectorisation and 5% of the time when compiled with vectorization enabled. Prefetching in the vector loop was again a key optimization for this benchmark.

Figure 8 shows the speedup of the configurations at 1 to 57 threads over the optimized C sequential runtime. All of these configuration scale cleanly up to 57 threads. The final measured Haskell Gap is 1.15×.

2.4 2D Convolution

The 2D convolution benchmark performs a convolution over a two-dimensional array of floating-point numbers using a 5x5 stencil. The naive C version passes arrays as function arguments, but uses a temporary variable as an accumulator in the inner loop. The C compiler is able to successfully vectorize this code, yielding good speedups. The ninja-gaps paper reports using a preliminary version of the Cilk++ array notation to produce an optimized version of this code vectorized on the second-from-outer loop. This code was not compatible with current compilers, however, a suitable optimized version was obtained by fully unrolling the inner loop over the stencil kernel and using a “#pragma simd” on the second-from-outer loop to force SIMD code generation on the unrolled loop body. The ninja version of the code is implemented using AVX
The ninja code performs the outer-loop vectorization described in the original ninja-gap paper, fully eliminating the inner loop in favor of straightline AVX code. In addition, this code is unrolled to perform four vector iterations at a time.

Producing a Haskell version of this code was entirely straightforward, since the Repa stencil libraries provide direct support for this style of stencil operation. Interestingly, the problem as originally written used a stencil of all ones, with the result that the compiler stack was able to eliminate all of the stencil multiplies entirely. While indicative of the greater optimization flexibility available in a functional language, it was felt that this was not indicative of the performance of the code on general stencil problems, and so the stencil was changed in both the C and the Haskell code to consist of all twos. With this change we are still able to constant propagate the value, but the multiply can no longer be eliminated. In general, even the values in non-uniform but constant stencils could be similarly constant propagated in the presence of loop unrolling. The generated code is overall quite good, and our compiler is able to vectorize the inner loop. Initially, due to unrolling performed by the Repa libraries, our vector code contained strided load instructions which are not supported in the AVX instruction set and instead must be emulated with some loss of speedup. By changing the Repa library implementation to unroll along a different axis, we were able to generate more vector friendly code.

A difficult issue arose in the translation and measurement of the 2D convolution benchmark, as well as several other of the ported benchmarks. In order to measure large enough problem sizes to obtain good timing results (particularly at larger number of processors), the C programs were written to iteratively re-compute the result an arbitrary number of times as specified on the command line. The re-computation is performed after distribution of the work to the worker threads: that is, each worker thread receives a portion of an array to convolve, and an iteration count telling it how many times to perform the convolution. We saw no clean way to implement this directly in the Haskell code, and were forced instead to iterate notionally outside of the worker threads by repeatedly doing the entire convolution. This is problematic for comparison purposes for a number of reasons: firstly in that it potentially introduces additional synchronization and communication overhead; secondly in that it introduced garbage collection into the equation since new result arrays must be allocated and collected; and thirdly that it produces somewhat different cache behavior than in the C program. All of the C benchmarks were written in this style, and we do not have a general solution to this problem. Where possible, we have chosen to increase the problem size to the point where a single iteration suffices. For some programs, such as 2D convolution, this was not possible. Consequently, the performance results reported here are likely overly pessimistic.

The relative sequential performance is given in Figure 9. The ninja code performs best, but the optimized code comes within 10% of the ninja performance. The ninja code is substantially faster than the naive C code, despite the fact that the compiler is able to vectorize the naive C code, indicating that the hand-unrolling of the inner loop performed by both the optimized C and the ninja code is a key optimization for this benchmark. The GHC compiled Haskell code is almost 2.4× slower than the naive C code and hence almost 18× slower than the ninja code. The GHC LLVM backend gives

![Figure 8. 1D Convolution Xeon Phi speedup (best sequential)](image8.png)

![Figure 9. 2D Convolution CPU normalized run time](image9.png)

![Figure 10. 2D Convolution CPU speedup (best sequential)](image10.png)

![Figure 11. 2D Convolution Xeon Phi normalized run time](image11.png)

2.4.1 CPU Performance

For the 2D convolution benchmark, we measured naive C, optimized C, and ninja C versions of the code, the last using AVX intrinsics. We also measured the Haskell code compiled with both the Intel compiler (with and without the SIMD optimization) and the GHC compiler (with and without the LLVM backend). All measurements were taken by convolving a 8192 by 8192 image repeatedly for 50 iterations.

The relative sequential performance is given in Figure 9. The ninja code performs best, but the optimized code comes within 10% of the ninja performance. The ninja code is substantially faster than the naive C code, despite the fact that the compiler is able to vectorize the naive C code, indicating that the hand-unrolling of the inner loop performed by both the optimized C and the ninja code is a key optimization for this benchmark. The GHC compiled Haskell code is almost 2.4× slower than the naive C code and hence almost 18× slower than the ninja code. The GHC LLVM backend gives
substantial benefit on this benchmark, exhibiting only a $1.27 \times$ slowdown over the naïve C, or a $9.4 \times$ slowdown over the ninja C. However, the Intel compiled Haskell code is substantially faster than the naïve C code, and only around $1.2 \times$ slower than the ninja code.

Figure 10 shows the parallel speedup of the various configurations relative to the sequential performance of the ninja configuration. Both the ninja and the optimized C code scale well up to 9 or 10 processors and subsequently behave somewhat oddly. This is highly suggestive of communication issues arising from the multi-socket architecture and preliminary analysis of performance counter data supports this, but we have not been able to pursue this analysis further. The HRC SIMD code exhibits a similar scalability profile, albeit at lower absolute performance levels. Despite this lack of scalability on the part of the ninja code, none of the other configurations is able to make up the substantial head-start provided by the significantly better sequential performance of the C code. The GHC compiled code remains the slowest throughout the full range, with a final Haskell Gap of $3.81 \times$. Interestingly, the naïve C code scales quite cleanly, eventually almost matching the performance of the HRC SIMD compiled Haskell code by making better use of higher number of cores. The final Haskell Gap for the HRC compiled code is $1.8 \times$.

2.4.2 Xeon Phi Performance

For the 2D convolution benchmark the naïve C configuration was compiled for the Xeon Phi, and a version of the ninja code was produced by modifying the implementation used in the original ninja-gap paper to measure results on an earlier software development platform sharing the same ISA. Haskell code was compiled with HRC, again with and without vectorization. All measurements were taken by convolving a 8192 by 8192 image repeatedly for 10 iterations.

Figure 11 shows the sequential runtime relative to the C Naive configuration. The ninja C and optimized C configurations again get substantial speedups from the wide vector units, running in 13% and 14% (respectively) of the time of the naïve C configuration. The HRC compiled Haskell code is 8% slower than naïve C without vectorization, and vectorization boosts the results by almost $7 \times$, only slightly slower than the ninja and optimized C runtimes.

Figure 12 shows the speedup of the configurations at 1 to 57 threads over the ninja sequential runtime. The ninja C and opt C configurations scale fairly well, but the HRC compiled code scales poorly. The final Xeon Phi Haskell Gap for this benchmark is $3.71 \times$.

2.5 Black Scholes

The Black Scholes benchmark computes put and call options. The computational kernel is a loop computing a cumulative normal distribution function. The naïve C version uses an array of struct representation. The C compiler does not choose to auto-vectorize the loop (though it can be forced to by using a pragma). The optimized C version uses a struct of array representation, but the auto-vectorizer still chooses not to vectorize the loop, possibly because of the presence of a conditional in the loop. Annotating the loop with “#pragma simd” suffices to cause vector code to be generated and the SOA format is well-suited to vector code generation. The ninja version uses the same representation as the optimized C version but is written using AVX intrinsics directly.

The Haskell port of this code was subject to fairly extensive performance tuning. The core of the kernel is a relatively straightforward translation of the C code, with some re-arrangement to eliminate some conditionals. One strictness annotation is used on a helper function. The option data is represented as a tuple, and the input array of options is represented as a one-dimensional Repa unboxed array of options. The Repa library performs the AOS-SOA conversion on the input data. The iteration over the option array to produce the result is performed using the Repa “map” function over the input array. The inner loop of both the C and the Haskell versions of this code contains a conditional. HRC maps this conditional to a use of a conditional move instruction, and hence is able to vectorize this code directly without generating fully-general predicated code.

2.5.1 CPU Performance

For the Black Scholes benchmark, we measured the performance of all of the implementations on a data set of 61,000,000 options. The relative sequential performance is given in Figure 13. The optimized C code runs in 20% of the time of the naïve code and actually slightly outperforms the ninja code, again possibly reflecting changes in architectures or compiler improvements.

The baseline Haskell code compiled with our compiler runs slightly faster than the naïve C code, but is a factor of $4.4 \times$ slower.
than the optimized C code. Adding the SIMD optimization brings the HRC compiled code to within 15% of the performance of the optimized C code. The GHC LLVM compiled code is slower than the naive C code by a factor of 3.85×, and is slower than the optimized C SIMD code by almost a factor of 18×.

Figure 14 shows the speedup of the main configurations relative to the best sequential version (the optimized C code). The scalability results for this benchmark are significantly mixed. The ninja and optimized C implementations scale reasonably well up to 8 or 9 processors, and then drop somewhat before flattening out. It is likely based on our preliminary investigations that this is related to migration of data between sockets. The server machine on which these measurements were taken contains 4 separate physical processors, each with 8 cores. The phase transition at 8 threads is suggestive, but not definitive. The HRC compiled code exhibits almost exactly the same scalability curve, albeit with slightly lower absolute performance. The GHC compiled code scales quite well, achieving a 24× speedup over its own sequential performance at 32 processors. However, this is still not remotely sufficient to overcome the sequential performance deficit, requiring 24 processors just to match the sequential performance of the optimized C code. The final Haskell Gap for the GHC compiled code is 4.48×, and the Haskell Gap for the HRC compiled code is 1.92×.

2.6 Volume Rendering

2.6.1 CPU Performance

For the Volume Rendering benchmark, we measure five different configurations: a naive C version, a ninja version written with AVX intrinsics, a Haskell version compiled with the HRC Compiler, and the Haskell version compiled with GHC and GHC LLVM. Since our compiler cannot generate SIMD code for this benchmark, we report only a single configuration for HRC. All configurations were measured with a single run rendering 100,000,000 voxels.

The relative sequential performance for these configurations is given in Figure 17. The ninja code runs in 37% of the time of the naive C code. The GHC compiled Haskell code takes a factor of 2.31× times slower than the naive C code, or 2.39× slower when using the LLVM backend. The HRC compiled code runs 1.05× slower than the naive C.

The speedup of all of the configurations relative to the ninja code is given in Figure 18. The C ninja configuration scales well to 8 processors and then drops off. The HRC compiled code and the C naive code scale well to around 16 processors before dropping
Haskell version runs in 86% of the time of the naive C version, in 32% of the time of the naive C version. The HRC compiled code scales somewhat better, and is able to make up some (but not all) of the initial sequential performance deficit. The final Haskell Gap for this benchmark is 1.05 × for HRC, and 0.86 × for GHC.

2.6.2 Xeon Phi Performance

On the Xeon Phi platform, the ninja version of this benchmark runs in 32% of the time of the naive C version. The HRC compiled Haskell version runs in 86% of the time of the naive C version, 2.7× slower than the ninja C code. The relative sequential performance for these configurations is given in Figure 17. The speedup of all of the configurations relative to the ninja code is given in Figure 18. The ninja code does not scale well past 30 processors. The Haskell code scales somewhat better, and is able to make up some (but not all) of the initial sequential performance deficit. The final Haskell Gap for this benchmark is 1.7×.

2.7 Tree Search

The tree search benchmark does a search on a structured tree to find data by index. The code is consequently quite control dependent. The naive C version is implemented using the obvious binary search algorithm over a static index structure laid out breadth first in an array. The optimized C version implements a fast algorithm by Kim et al [3], performing multi-level search over a tree re-organized into hierarchical blocks. The blocking structure helps to improve page and cache memory locality, and even permits a SIMD vector implementation after algorithmic change to avoid early loop exits. Further optimizations such as loop unrolling make the code suitable for compiler auto vectorization. The Ninja C version implements the same algorithm as the optimized C with hand written SSE intrinsics. It also implements SIMD-level blocking as well as pipelining, neither of which are used by the optimized C version. These optimizations require the use of gather instructions which must be emulated on CPU. Both the ninja C and the optimized C programs can only deal with a specific fixed tree depth in order to completely unroll the inner loops and get rid of all early loop exits. In contrast, the naive C can deal with arbitrary tree size.

The Haskell version of the code represents the search tree using a Repa unboxed array, and implements the same optimized binary search algorithm as the optimized C version. Rather than manually unrolling the loop as in optimized C, the Haskell program represents a single step of tree traversal as a function, composes that into a traversal for a block, and composes multiple block traversals into a traversal for the entire tree. GHC is able to inline all the intermediate function compositions and thus achieves the same effect as loop unrolling. HRC is then able to vectorize the resulting program. As with the ninja C and optimized C programs, the Haskell version can only handle a specific fixed tree depth. One may argue that statically composing traversal functions to get a single fused search function for a fixed tree depth is beyond the scope of idiomatic Haskell. But since we are implementing the same algorithm as the optimized C, we feel it is fair to compare fused Haskell functions with loop-unrolled C functions, especially when both versions are able to vectorize.

2.7.1 CPU Performance

For the Tree Search benchmark, the ninja C code has not been ported to AVX architecture, so we use a SSE version only. On the other hand, both the optimized C version and the Haskell version compiled with HRC have been vectorized to use AVX intrinsics. All programs were run with 95 million queries over a binary tree of depth 24.

The relative sequential performance for these configurations is given in Figure 21. For this code, the optimized C runs in 43% of the time of the naive C, mostly because it is blocked, vectorized, and specialized to handle fixed tree depth of 24. The ninja version
using SSE intrinsics runs slightly slower than the optimized C, possibly because of the use of SSE instructions instead of the full length AVX instructions. The Haskell code compiled with HRC without SIMD vectorization runs faster than the naive C, but slower than the optimized C. However, adding SIMD vectorization improves the performance substantially, with the HRC SIMD code running 10% faster than the optimized C code. The GHC compiled code runs approximately as fast as the naive C code.

Figure 22 shows the speedup of all of the configurations relative to the HRC SIMD sequential performance (the fastest of the configurations). The ninja C code demonstrates superior scalability up to 8 processors, but then falls off substantially. This again reflects the fact that the ninja code was tuned for a single socket architecture and is not well-tuned for multi-socket architectures. The optimized C code and the HRC SIMD code both continue to scale up to 32 processors, albeit less efficiently past 8 processors. The HRC SIMD code continues to exhibit superior performance throughout the range of processors. The final Haskell Gap is $1.73 \times$ for GHC LLVM, and $0.95 \times$ for HRC SIMD.

2.7.2 Xeon Phi Performance

For the TreeSearch benchmark, since we have yet to re-produce a ninja version using the Xeon Phi vector ISA and its native gather support, we only report the performance for the naive C, and for optimized C compiled with the Intel C compiler for the Xeon Phi. The Haskell programs were compiled and vectorized with HRC. All benchmarks were run with 10 million queries over a binary tree of depth 24.

The relative sequential performance for these configurations is given in Figure 23. Again, we observe poor performance with the naive C code. The C code optimized for a depth 24 tree (Opt C) is 50% faster than the naive C, comparable to the HRC compiled Haskell code without SIMD vectorization. The HRC SIMD compiled Haskell version is the fastest of all, running about 84% faster than naive C. This result provides an interesting comparison to the performance numbers on CPU for the same benchmark, contrasting the difference in hardware architectures.

Figure 24 shows the speedup of all the configurations relative to the HRC SIMD sequential runtime. All versions scale relatively linearly except for HRC SIMD, which scales poorly beyond around 30 threads. We have good reasons to believe a native ninja C version if available could beat Haskell, but from the results presented here, the final measured Haskell Gap for this benchmark is $0.76 \times$ when compared to the best C performance available for now.

2.8 Summary

Figure 25 summarizes the Haskell Gap for these benchmarks on CPU, using HRC and GHC with the LLVM backend. Our use of the Haskell Gap measurement in these benchmarks is intended to capture the overall potential peak performance achievable using Haskell, relative to well optimized C versions, accounting for both sequential performance, SIMD parallelism, and thread parallelism.
We believe that this measure emphasizes the point that achieving performance parity with low-level languages necessarily requires both good sequential performance and good scalability. For certain of these benchmarks, generally ones in which we are able to effectively leverage SIMD parallelism and provide good baseline sequential performance, the Haskell Gap is encouragingly small. For others however, the gap remains wide.

Figure 26 summarizes the Haskell Gap on Xeon Phi. We are encouraged to achieve an overall improvement in peak performance over the best C version on the Tree Search benchmark. Our performance on the 2D convolution benchmark is disappointing when compared to our performance on the CPU. This may in part reflect the preliminary nature of our vectorization support on this architecture, and in particular some new issues to be resolved in supporting a 64-bit architecture.

3. Conclusions

We strongly believe that empirical performance comparisons to C and other high-performance languages serve as a valuable reference point and sanity check for work on optimizing functional languages in general, and Haskell in particular. However, we hope that this paper makes the point that such comparisons are extremely difficult to do well. There are always, at some point, judgment calls to be made—among them the crucial questions “What C?”, and “What C compiler?”. A benefit of programming in C is that there are substantial opportunities for hand-optimization—as we show in this paper, relatively simple code transformations can make dramatic changes in performance. Therefore, exactly what C code is compared to is critical. Similarly, the choice of C compiler and the options passed to it can significantly change the result of the comparison. Finally, there is always the question of what is “fair” to use in the C code. Is the use of pragmas to induce vectorization where the compiler otherwise would not “fair”? What about intrinsics? What about inline assembly code? To what extent should we allow the C compiler to re-arrange floating-point computations in ways that may change the precision of the computed result?

And on the other side of the equation, what Haskell code should be used for a comparison? One can, with sufficient effort, essentially write C code in Haskell using various unsafe primitives. We would argue that this is not true to the spirit and goals of Haskell, and we have attempted in this paper to remain within the space of “reasonably idiomatic” Haskell. However, we have made abundant use of strictness annotations, explicit strictness, and unboxed vectors. We have, more controversially perhaps, used unsafe array subcripting in places. Are our choices reasonable?

We do not believe that there are definitive answers to these questions. We have tried, in this paper, to explore very carefully a space of answers to these questions that we feel is reasonable. We have shown that for our notion of “reasonable” Haskell, using the compiler technology we have developed, there are reasonable C programs which are significantly out-performed by our reasonable Haskell programs; and that there are other, equally reasonable C programs which in turn significantly out-perform our reasonable Haskell. We have also tried, as best as possible, to leverage previous work [9] to situate our choices of “reasonable” programs relative to the best published algorithms. We hope that this work provides a valuable set of data points for programmers and implementers wishing to understand better how certain classes of Haskell programs stack up against “equivalent” C programs. We also hope that this work encourages a practice of taking comparisons seriously, and presenting them transparently, with the understanding that every such comparison inevitably relies on making choices and is hence only meaningful insofar as those choices can be seen and understood by the reader.

Acknowledgments

We are grateful to the authors of the ninja-gap paper [9] for providing us with access to their source code, answering our questions, and for providing the inspiration for this work.

References