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Abstract
Hardware trends suggest that large-scale CMP

architectures, with tens to hundreds of processing cores on 

a single piece of silicon, are iminent within the next 

decade. While existing CMP machines have traditionally 

been handled in the same way as SMPs, this magnitude of

parallelism introduces several fundamental challenges at

the architectural level and this, in turn, translates to novel

challenges in the design of the software stack for these 

platforms. This paper presents the “Many Core Run Time”

(McRT), a software prototype of an integrated language

runtime that was designed to explore configurations of the

software stack for enabling performance and scalability on

large scale CMP platforms. This paper presents the

architecture of McRT and discusses our experiences with

the system, including experimental evaluation that lead to

several interesting, non-intuitive findings, providing key

insights about the structure of the system stack at this scale.

A key contribution of this paper is to demonstrate how 

McRT enables near linear improvements in performance

and scalability for desktop workloads such as the popular 

XviD encoder and a set of RMS (recognition, mining, and

synthesis) applications. Another key contribution of this

work is its use of McRT to explore non-traditional system

configurations such as a light-weight executive in which 

McRT runs on “bare metal” and replaces the traditional 

OS. Such configurations are becoming an increasingly 

attractive alternative to leverage heterogeneous computing

uints as seen in today’s CPU-GPU configurations.
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1. Introduction
Hardware architects are increasingly turning to CMP based 

solutions as single threaded processor performance

becomes power limited [32]. Apart from power, computing

requirements of emerging domains such as gaming, multi-

media and data mining motivate the need for exploring

multi-threaded CMP-based solutions [32]. The tera-scale

computing research project at Intel [33] explores futuristic

processor configurations and will potentially deliver CMP

platforms with 10s to 100s of processing units within the

next decade. The first step in this transition, which we call 

“small scale CMP”, involves integrating multiple

conventional cores on a single chip. Several such products

have already been announced and are expected to enter the

markets by the end of the year.  Small-scale CMPs aim to 

boost performance without stretching the power envelope.

While improving power efficiency, small-scale CMPs still 

can not fulfill the computing needs to enable new usage

models based on multimedia, games, data mining, etc. [32].

This motivates the need for “large-scale” CMPs, also called 

many-core platforms, that integrate tens of multi-threaded

cores on a single chip. Unlike conventional processors, 

each core in a large-scale CMP may potentially sacrifice 

single-threaded performance to improve overall efficiency.

This new architectural paradigm introduces several new

challenges in the design of the software stack for large-

scale CMPs. For example, these architectures may remove

out-of-order mechanisms yet achieve high throughput by

threading the individual cores. 

This paper presents the “Many-core Run Time” (McRT,

pronounced ‘mac-ar-tee’), a software prototype of an

integrated language runtime that was designed to explore

configurations of the software stack for enabling

performance and scalability on large scale CMP platforms.

A key realization from this work was that enabling

scalability and performance required a high degree of

synergy between the different components that make up the

system. This paper presents the architecture of McRT and 

discusses our experiences with the system, including

experimental evaluation that lead to several interesting,

non-intuitive findings. The primary contributions of this 

work are:
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1. McRT is a new system software framework that is 

designed to study the performance characteristics on 

large scale CMP platforms. The novelty of the

framework lies in the synergy between the different

components, rather than in the components themselves.

We had to significantly re-architect the system

software stack to allow for a tight integration between

the different components of McRT.

2. We show that McRT required non-intuitive

mechanisms for enabling scalability on threaded

workloads; for example, McRT needed to implement

different runtime policies depending on the number of

underlying hardware threads.

3. A key distinguishing aspect of this work has been its

focus on emerging desktop application workloads

rather than on traditional throughput oriented task-

parallel systems workloads such as web-servers and 

databases. (In the rest of this paper, we will refer to the

emerging desktop workloads as RMS (recognition,

mining, synthesis) workloads [41]).

4. Finally, we present the design and results for 

“sequestered execution mode”, where McRT functions

as a light-weight runtime system that runs directly on

“bare metal” hardware without an underlying OS. In 

this mode, the application can still access OS services

such as file I/O, while leveraging the lightweight

nature of McRT to enable better scalability.

Preliminary results with sequestered mode argue for

re-evaluating both the role and structure of operating

systems on large scale CMP platforms.

1.1 Motivation
While system software has traditionally treated CMPs as

“SMPs on chips” [5][6], there are fundamental differences

in the characteristics of these platforms. Our experience 

shows that it is critical to address these differences in order 

to implement a scalable and effective software stack. In 

particular, the software stack needs to address three factors: 

support for fine-grained parallelism, programmability

enhancements, and different kinds of heterogeneity.

Fine-grained parallelism:

Architectural differences make it essential to provide

efficient fine-grained thread interactions on large scale 

CMP systems. For example, the compute-to-cache ratio 

(number of HW threads / aggregate cache size) for a large

scale CMP platform is orders of magnitude higher than for

traditional SMPs. The latency to access data from a

different HW thread is an order of magnitude lower than a

traditional SMP. Finally, the instruction issue bandwidth

has a high premium in many-core processors since, unlike

traditional SMPs, each processor is highly threaded. 

Section 3.2 explains these differences in greater detail.

In addition, the usage model for emerging application

domains also motivates the need for fine-grain parallelism.

While these applications do not benefit from traditional

coarse grained task-parallel techniques [34], they benefit

greatly from fine-grained models such as nested data

parallelism.

Programmability enhancements: Due to the relatively

high cost for multi socket systems traditional SMP systems

were targeted at niche markets, and ran specific workloads

written by sophisticated programmers. In contrast, large 

scale CMP platforms potentially target main stream price 

points, and therefore a key challenge is to help mainstream

programmers embrace parallelism. This motivates the need

to include features that help average programmers deal 

with the challenges of parallel programming.

Heterogeneity: Large scale CMP platforms are likely to

run a more diverse set of applications than SMP systems

simply because they can target a larger, broader market.

This has two implications: (a) the software stack can not be

customized for individual applications, but must support a 

heterogeneous set of applications (b) the underlying HW

may itself be heterogeneous [39]; for example, it may

include a few heavyweight cores with good scalar

performance, and many light-weight threaded cores with 

good compute density (e.g. for RMS applications).

Given the above differences, we believe that the system

software stack requires a significant, holistic, redesign in

order to exploit the capabilities of large scale CMP

platforms. Accordingly, the McRT framework was 

designed to provide a flexible and configurable framework

that can efficiently scale to more than 64 HW threads. 

McRT also provides a rich set of abstractions that can be 

used to realize different kinds of execution semantics,

including those seen in traditional thread-based or event-

based programs. A key feature of the design has been the

tight coupling with programming language interfaces – 

McRT provides a basic set of primitives that can be used to

support different programming models such as OpenMP,

pthreads, and Java. Finally, McRT addresses the key large

scale CMP requirements in the following ways (elaborated

in the rest of the paper):

(1) Fine-grained parallelism: Internally, McRT 

implements a significant fraction of the traditional OS

functionality at the user-level. For example, it includes a 

user-level threads package based on co-operative

scheduling, a user-level scheduler that supports

configurable scheduling policies, and a user-level

synchronization framework. In addition, it provides very

lightweight primitives, such as futures, that can support

efficient fine-grained parallelism constructs at the language

level.

 (2) Programmability enhancements: McRT includes an

optimized software transactional memory module that is
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integrated with a compiler to support language level

transactions. This allows applications to use transactions in

lieu of locks. Transactions enhance programmability by

eliminating deadlock, automatically providing scalability

features such as fine-grained concurrency and read-sharing,

and allowing safe and scalable composition of atomic

primitives [35][36][37].

(3) Heterogeneity: McRT can be configured to implement

different runtime policies to suit different applications. It 

can also be used to partition a platform into different

domains with tasks in each domain scheduled 

independently. The partitioning can also be leveraged to

run McRT in “sequestered mode” (Section 5), where it runs

directly on the hardware without an OS underneath, thus

allowing a tighter coupling between an application and the

underlying HW. In such a mode, the operating system runs 

on only some of the CMP cores (also referred to as non-

sequestered cores) and is used to provide facilities such as

I/O to the applications running (on top of McRT) on the

sequestered cores.

We chose to build the McRT system from scratch instead

of modifying an existing operating system such as Linux,

or adding extensions to a micro-kernel operating

system[14] [29][15]. McRT was built from scratch for two

reasons: first, developing the McRT framework

independently ensured that the re-factoring of the system

software stack was not limited by the complexities and

capabilities of any given operating system. Moreover, it 

allowed us to explore lightweight configurations that

eliminate the OS altogether. Second, the key features of the

McRT design are the synergy between the components, and

the configurability of the individual components.

Achieving this level of synergy and configurability would

have required a significant rewrite of the existing

components and the APIs.

The remainder of this paper is organized as follows.

Section 2 gives an overview of McRT highlighting the

components that are critical for enabling fine-grained

parallelism. Section 3 evaluates McRT performance on a

large scale CMP platform. Section 4 discusses the

programmability support in the McRT framework. Section

5 uses the sequestered mode execution to highlight McRT’s

support for heterogeneity. Finally, we discuss related work

and conclusions.

2. The Many-Core Runtime 
This section discusses the different mechanisms

implemented in McRT to enable fine-grained parallelism.

Figure 1 presents the general structure of McRT. At its

core, McRT consists of five user-level components—a

scheduler, a memory manager, a synchronization

framework, a transactional memory library and a set of

primitives for lightweight threading. McRT’s external

interfaces are implemented as a set of thin translation layers 

called adaptors. The client adaptor interface can be used to 

map a variety of higher level programming models and 

parallel programming implementations to the McRT API. 

Currently, McRT supports a pthreads, OpenMP and Java 

virtual machine interface. At the other end of the stack, the 

host adaptor interface enables McRT to run on a variety of 

platforms including traditional operating systems (Linux

and MS Windows) on IA-32 based SMP systems,

sequestered systems (Section 5), and large scale CMP

simulators. These modules are quite typical in any language

runtime.

Figure 1: Overview of McRT 

McRT provides two basic threading primitives, user-level

threads (McrtThread) and futures (McrtFuture), that are

tightly integrated with the McRT scheduler. McRT threads

provide a fully functional, POSIX compliant

implementation of user level threads. For clients that do not

require the full threading API and which do not require full

co-routine concurrency, an even cheaper form of 

concurrency is also available through the McRT futures

construct. McRT futures are intended to support a common

idiom in programming languages, such as CILK[30], in

which code is required to have a serial execution, but is

also allowed to be run concurrently for performance

reasons.  The core API provides a “spawn” routine which

takes a function and an argument and returns a handle to

the result, and a “read” routine which given a handle,

returns the result of applying the function to the argument.

Because of the serial semantics, McRT has great flexibility 

as to how it computes the result.  It may choose to compute

the result eagerly without creating additional parallel work, 

it may compute the result on demand, or it may compute

the result concurrently using additional worker threads.

Based on the underlying hardware and system load McRT

is able to carefully choose a good scheduling policy that

maximizes the granularity of concurrent work while still 

utilizing as many of the available resources as possible.
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McRT provides a highly configurable, user-level scheduler

that can be used to realize a variety of scheduling

strategies. Section 3 demonstrates that configurability is 

critical for enabling performance and scalability.  As usual

the scheduling policy of the system is defined as the

mapping between logical processors and task queues. A 

key aspect of our design has been that the different

threading primitives rely on co-operative scheduling

instead of the typical pre-emptive scheduler.

Our scheduler framework exports an API to enable a client

to dynamically configure the allocation of processing

resources to tasks. For example, a client can configure the

mapping between logical processors and task queues.

Similarly, a client can configure how tasks are added to

task queues.  Conceptually, three parameters configure the

scheduler:

P = number of logical processors, 

Q = number of task queues, and 

T = number of threading abstractions.

For example, setting P equal to Q, and making processor 

PK snoop only the queue Qk provides processor local task

queues. In addition, if a threading abstraction created on a

processor Pk is always added to the queue Qk, then the

abstractions always preserve affinity. On the other hand,

allowing a processor Pk to snoop any of the queues 

provides a work stealing scheduler. Adding new threading

abstractions in a round-robin way among the task queues 

provides a work sharing scheduling policy.

The task queue abstraction is also used for implementing

scheduling domains which can be used to deal with

different kinds of heterogeneity.  At one level, scheduling

domains may be used to tailor the system to HW

heterogeneity by using specific domains to represent

particular cores with the ability to handle special purpose

instructions (e.g. SSE). At a higher level, heterogeneity

may be used to indicate different configurations of the

software stack. Section 5 shows an example of two distinct

kinds of software stacks running on the same system.

Formally, to create a domain Dk consisting of logical

processors Pi to Pj, a client creates a single task queue Qk

that is snooped only by the processors Pi to Pj. All 

threading abstractions created by these processors are also 

added to the queue Qk. To switch to a different domain D’, 

a threading abstraction uses an API call to yield and 

enqueue itself to a different task queue (in this case the task

queue Q’ associated with the domain D’). The abstraction

will then get scheduled onto one of the processors

belonging to the domain D’. An obvious logical extension

is that of clients creating multiple task queues within a 

scheduling domain.

Another key aspect of the scheduler API is its ability to

allow for the fine-grained control and co-ordination

between executing tasks. Specifically, the API exports

functions that can be used to enqueue tasks on any arbitrary

queue, yield control from executing tasks and possibly

schedule in new tasks, or change the task-to-queue

mappings. Threading abstractions don’t get pre-empted;

rather the abstractions must yield at intervals to allow other

abstractions to execute. We chose co-operative scheduling 

over traditional pre-emptive scheduling for 2 reasons:

first, as shown in Sections 3 & 4, it allows other parts of

the McRT framework to use simpler and more efficient

algorithms; second, we believe preemption is

fundamentally motivated by the need to time-share

expensive hardware resources to maximize their utilization.

Typically, this motivation would be weakened, often

significantly, on a large scale CMP platform due to the

large number of HW processors. Co-operative scheduling

does come at a cost; for example, it is difficult to guarantee

hard real-time constraints, or fairness. The current McRT

scheduler does not attempt to provide these properties

owing to its focus on performance and scalability, but these

are topics of ongoing research.

Our scheduling framework leverages the tight integration

of the threading system to provide a richer execution model

compared to traditional operating system schedulers. Users 

can dynamically program scheduler actions – when an

abstraction yields, it can pass a predicate to the McRT 

scheduler to indicate that the predicate must be true before 

the abstraction is scheduled back. This enables a nice 

synergy with the synchronization module.  The following

simplified code sequence from our barrier implementation

illustrates this:

uint32 barrierWait(Barrier* barrier) { 
  threadsLeft =
    lockedDec(barrier->threadsLeftToEnter); 
  if (threadsLeft > 1) { 
     mcrtYield(barrier->threadsLeftToEnter,
                Equal, 0); 
     /* returns when everyone at barrier */ 
  } 
  /* other code */ 
 } 

The barrier code first checks whether we are the last thread 

to enter the barrier (threadsLeft > 1). If not, the 

current thread yields but informs the scheduler to schedule

it back only when all threads have reached the barrier.  The 

same mechanism is used by other synchronization

primitives, such as, acquiring locks. Yielding through

predicates provides a light-weight mechanism for co-

scheduling since blocked threads readily yield to active

threads.

McRT also includes an elaborate set of synchronization

primitives and a high performance memory allocator that

replaces native malloc/free implementations. This has been 
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described in [38]. Each of these components has a tight

synergy with the threading system. To enable good

caching, the memory manager provides each thread with 

private allocation blocks. In a large scale CMP system

where threads are created in large numbers, these resources 

need to be recycled. When a thread exits, the scheduler 

uses a fast callback to notify the memory manager, which

adds the blocks owned by the exiting thread to a pool of

free blocks (to be recycled as needed).

Finally, Mcrt includes a variety of client side adaptors that

can be used to translate programs written in popular 

paradigms such as pthreads, and OpenMP. The pthreads

and OpenMP adapters provide a mostly straightforward

translation of the different constructs to the McRT API. 

The OpenMP adapter supports true nested parallelism. It

creates as many McRT threads as specified by any nested 

parallelism construct, which then get scheduled on the

logical processors. The OpenMP adaptor implements the 

runtime API used by Intel C compiler v8.0. Section 3 

describes results for both OpenMP and pthreads programs.

A Java Virtual Machine, ORP [40], was also refactored so 

that the OS threading primitives that it was hitherto using

were translated to the corresponding McRT primitives.

3. McRT Performance Evaluation 
This section describes experiments that evaluate the

performance and scalability of McRT on representative

workloads for large scale CMP systems. Since we expect

traditional server-side task-parallel workloads such as web-

servers to benefit directly from the underlying parallelism,

we decided to focus this work on the relatively less-studied

client-side workloads, which we believe will drive future

many-core architectures. Specifically, our experiments are 

based on the popular open source MPEG4 encoder XviD

(www.xvid.org) and a set of RMS kernels [41][52] for 

singular value decomposition (SVD) and self organizing 

maps (SOM). The XviD encoder is used at resolution of

1920x1080 to correspond with frame sizes in the emerging

high definition video. We show the performance for

encoding the P frames since these (along with the B

frames) happen to be the computationally intensive parts of

the encoding. SVD has numerous applications in the areas 

of data-mining and feature extraction, signal processing,

automated control; this workload uses the Jacobi method.

A SOM is an unsupervised learning method represented by

a two-layer neural network. Typically it is used to map N 

dimensional data to 2 dimensions to discern patterns. It is

extensively applied in text and feature mining, pattern

recognition and medical diagnostics. The XviD encoder is

based on OpenMP, whereas the RMS kernels use pthreads.

3.1 Microbenchmark evaluation 
The first set of experiments evaluate the efficiency of 

McRT’s threading primitives through a set of micro-

benchmark experiments. Three experiments, also used for 

evaluating similar user-level threads packages[8], were 

used: the first experiment measured the cost of thread 

creation by measuring the cost of creating 255 threads; the

second measured the cost of acquiring and releasing locks,

computed by performing 1000 consecutive lock and release

operations; and finally, the third experiment evaluates the

overheads imposed by context switches between threads.

This was done by measuring the cost for 1000 context

switches between two threads. In each case the 

gettimeofday() system call was used to perform the 

measurements.

Native threads

on Linux 2.6.9 

µsec

McRT

µsec

Thread create 

(255 iterations)

8960 1841

Mutex lock/release

(1000 iterations) 

82 81

Context switch 

(1000 iterations) 

3600 748

Table 1: Micro-benchmark experiments

Table 1 compares the overheads seen in McRT with those

on a native Linux platform. Column 2 reports the

measurements seen by using native threads (pthreads) on a 

dual CPU, dual core, hyper-threaded Xeon 2.8 Ghz 

machine running RedHat Enterprise Linux 2.6.9-22ELsmp

(NPTL 0.60). Column 3 presents the corresponding

measurements observed when running McRT on top of 

Linux on a 2.8Ghz hyper-threaded Xeon machine. As 

expected, McRT threading primitives are significantly

cheaper than their native-threads counterpart.

Our next experiment measures the scalability of our

threading primitives. This experiment focused on

measuring the cost of thread creation while varying the

number of threads. The experimental setup was the same as 

described earlier. Figure 2 shows the results of this

experiment. Note that McRT thread creation costs are not 

significantly affected even in the presence of thousands of

threads; in fact, McRT is much more efficient at high 

thread counts. The final experiment compares the overhead 

of McRT threads to the overhead of McRT futures.  To do

this, we created batches of futures and threads whose

executable
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code simply returned immediately.   We measured the time

to complete a batch for increasing batch sizes, and

compared the time needed to complete a given batch size

for the McRT threads against the time needed to complete

the same batch size using the futures.  As seen in Figure 3,

the creation, scheduling, and de-allocation overhead of a

McRT thread is between a factor of 40 and a factor of 120

times greater than the equivalent overhead for using

futures.

3.2 Large scale CMP evaluation 
This section evaluates McRT performance on a large scale

CMP platform. Our experiments are based on a cycle-

accurate simulator that was used to model a typical large

scale CMP system. The simulated platform consists of an 

array of up to 32 in-order cores, each of which has 4

threads (similar to [48]).  Each core will select a different

thread each cycle, round-robin, unless the thread is stalled

due to a cache miss or if the thread is in the sleep state. The

memory hierarchy consists of a 32KB L1 data cache that is 

shared by the 4 threads on the core, a 2 MB L2 cache that 

is shared by all the cores, and an off chip L3 cache of size 4 

MB. All caches were simulated with an 8-way set

associative configuration. The L1 cache access time is 3 

cycles, the L2 cache access time is 12 cycles, and the L3 

cache access time is 40 cycles. Our simulator performs a 

cycle accurate simulation of the execution pipeline for all 

the HW threads, the different caches (including thread 

interactions), the coherence protocol for the entire memory

subsystem, the bandwidth for data transfer between each 

part of the memory subsystem, and the interconnect to the

external memory.

This configuration highlights key differences between large

scale CMPs and comparable SMP systems. First, note that 

the execution resources in a particular core are shared

between 4 threads in the large scale CMP system. SMPs 

are either not hyper-threaded, or else do not share core

execution resources to such a high degree. This makes

instruction bandwidth more precious in a large scale CMP

system. Second, note that a large scale CMP and a SMP

have 2 major differences related to the cache hierarchy,

which motivates the need for fine-grained interaction

between threads: 

The ratio of the number of HW processors to the

total cache size. A SMP system with 64 HW

processors would typically have a total cache size of 

several tens or even hundreds of megabytes. SMPs

generally comprise of cores optimized for single thread 

performance, and therefore have a large cache per 

thread. In contrast, this CMP with 64 HW threads has

a total cache size of less than 10 MB.  In a CMP, the 

aggregate cache is significantly reduced because the 

aggregate die area is significantly reduced (one chip 

vs. the many chips in a SMP).

The relative latency of accessing data from a 

different thread. In a SMP system, accessing data 

from another thread typically implies die to die

communication. In a CMP system, latency to another

thread’s data is orders of magnitude lower since the

transfer can be handled without leaving the die.

Moreover, with each core in the CMP having multiple

threads, the effective latency is further reduced for 2 

reasons: a) if 4 threads are interleaved in the pipeline,

then each operation effectively has 1/4th the latency,

and b) if a thread in a core is stalled, the other threads

in the core can fully consume the core resources.

3.2.1 Effect of instruction bandwidth 
This section discusses how we addressed the effect of the

highly threaded core architecture on application scalability.

Figure 4 shows XviD performance on a single core. The 

“IPC scaling” bar shows how the instructions per cycle

(aggregate instructions for all the threads on a core) 

increases as we add threads; for example the IPC at 4

threads is 2.5X that of a single thread. The “base” bar 

shows the performance improvement for XviD running on

the baseline McRT; for example, performance at 4 threads 

is 2X the performance of a single thread. In the baseline 
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McRT configuration, when a thread is blocked (at a lock,

barrier, etc.), the underlying HW thread still executes 

instructions, thus unnecessarily consuming HW resources. 

We then added an efficient user-level Mwait instruction

[51] to the simulator. This instruction allows a software

thread to communicate to the processor that it is blocked; in

turn, the processor suspends the execution of the

corresponding HW thread. The SW thread also passes the

address of a location to be monitored for writes; the

processor starts execution of the underlying HW thread

when it sees a write to the monitored location, or after a

specified interval. Thus, Mwait ensures that a blocked

thread does not take away HW resources from an executing 

thread. The “Mwait” bar shows the speedup as we add

threads to a core. Note that the application speedup almost

exactly matches the IPC increase showing that the software

stack is almost perfectly efficient. It is important to note

that the addition of Mwait does not reduce the number of 

blocked cycles; it only ensures that a blocked thread does 

not waste execution resources. Hence all the performance

improvement in Figure 4 arises only from a better

utilization of the core instruction bandwidth. A SMP 

system would have a much lower sensitivity to instruction

bandwidth.

0

0.5

1

1.5

2

2.5
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1 thread 2 thread 3 thread 4 thread

Base Speedup

Mwait Speedup

IPC Scaling

Figure 4: Single thread XviD simulation

When running on the large scale CMP simulator, McRT

uses Mwait in all the synchronization constructs. For

example, if a thread fails to acquire a lock, it uses Mwait

and passes in the lock address to be monitored. Therefore,

the lock release automatically wakes up the thread since the 

release requires a write into the lock location.

3.2.2 Application scalability 
We now describe our experiences in making the XviD

video encoder scale on our many core platform. One way

of making the encoding process scalable is to encode

several frames in parallel. However, since the cache size on

a CMP is not sufficient to hold several frames

simultaneously, this strategy does not work.

In order to exploit parallelism, the encoding algorithm is

designed such that it partitions the frame into ‘k’ sub-

blocks where ‘k’ corresponds to the number of threads that

may be used for encoding; thus the numbers shown here 

reflect the speedup in encoding a single frame. This

reinforces the fact that fine-grained parallelism is 

important in the large scale CMP design. We started with

the serial version of the encoder and parallelized it with

OpenMP using mainly parallel for loops (including nested

parallel loops) and reductions. The serial execution time

and the single threaded execution time of the parallel

version of XviD were practically the same.
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Figure 5: XviD scaling on McRT 
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Figure 6: RMS Scalability on McRT 

Figure 5 shows the scalability of the XviD encoder on

McRT. The x-axis shows the number of cores. Note that

for k cores the number of HW processors available is k*4.

In this chart, speedup is computed with respect to the

execution time on a single core (i.e. the execution time with

4 threads). The figure shows the speedup for 768P 

(1024x768) and 1080P (1920x1080) frames. This

experiment demonstrates that we get almost linear speedup 

up to configurations that have 64 HW processors. The 

1080P shows a slightly better scalability than the 768p 

since the frame size is larger; hence each thread works on a 

bigger sub-block and is able to better amortize the

threading overhead. The “Linear” line in the graph 

represents perfect speedup. 
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Figure 6 shows the speedup seen for the RMS workloads

on our many core platform. Once again, these experiments

demonstrate that McRT can scale almost linearly up to 64

HW threads. We plot the number of cores on the x-axis

with each core containing 4 HW threads. We compute the 

speedup with respect to the execution time on a single core

(4 threads).  Again, the serial version of the workloads had

essentially the same execution time as the single-threaded 

parallel version.
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Figure 7: Effect of different scheduling and locking policies

3.2.3 Configurability
This section demonstrates the need for configurability in a

large scale CMP runtime. For the sake of discussion, this

section primarily concentrates on experiences with XviD.

Figure 7 shows the performance of XviD with different

McRT policies. The figure compares the performance with 

a single scheduling queue using a TTS (test & test & set)

lock, a single scheduling queue using a ticket lock, using 1 

scheduling queue/core (ticket lock) without any work

stealing, and using 1 scheduling queue/core (ticket lock)

with work stealing. There is no perceptible difference

between the policies till 16 HW threads (4 cores). At 32

HW threads, the distributed scheduling queue (1

queue/core) without work stealing performs the worst. The

distributed queue reduces contention; however the absence 

of work stealing hurts load balance. By definition, a single

scheduling queue provides perfect load balance. At 32 HW

threads, the load imbalance hurts more than the contention.

On the other hand, at 64 HW threads, contention becomes

more pronounced, and mitigates the effect of load

imbalance: thus the distributed scheduling queue performs

as well as the single queue. The effect of contention is

highlighted further by the fact that the queued locking

(ticket lock) starts to help compared to a TTS lock. Not

surprisingly, the distributed queue with work stealing

provides the best result – the load imbalance is removed

due to the stealing, and the contention is reduced since the

queues are distributed.
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Figure 9: Per thread load balancing in Xvid and Equake

Based on this result, it would appear as though work-

stealing is the optimal policy for XviD. Figure 8 shows the

XviD speedup as we increase the number of HW threads to

128. At 128 HW threads, the performance of work stealing

is worse than that of a no stealing configuration; upon 

inspection it turned out that work stealing introduces an

overhead that grows more than linearly with the number of

HW threads. At 128 threads, the overhead of stealing hurts

more than the load imbalance. To address this, we added a 

restricted form of stealing where a processor is allowed to

steal work only from the queues of its neighbors (denoted

as “3steal” in the graph). The restricted stealing performs

better than the unrestricted stealing at all data points, but

even that does not perform as well as with no stealing in a 

128 HW thread configuration. This shows that a runtime 

system must be configurable to enable different policies to

optimize application performance.

Given an image frame, the amount of computation required

for encoding different parts of it can vary significantly. For

example, the parts of the frame comprising the background

take significantly less computation since they remain static

between frames. On the other hand, the parts of the frame

containing objects in motion require more computation.

Other application domains do not exhibit such imbalance.

Figure 9 compares the load balance between XviD and 
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SpecOMP Equake by comparing the CPU utilization per

hardware thread. We use Equake as an example of a HPC-

style computationally intensive workload. We used the

Spec input set for Equake, and the 1080P frame for XviD.
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Figure 10: Equake speedup and scheduling policy

We computed the number of instructions executed by

different threads when both XviD and Equake were 

executed with 32 threads. Figure 9 shows the result with

each XviD thread’s instruction count normalized to that of 

the (XviD) thread with the maximum instructions; the

Equake data was similarly normalized. For XviD, the

busiest thread executes almost 2X the instructions of the

thread with the least instructions, but for Equake it is only

about 10% more. The XviD data reinforces Figure 7 which

showed that work stealing helps XviD at 32 threads. The 

Equake data is reinforced by Figure 10 which shows the

effect of work stealing; at 32 threads, stealing performs

worse than no stealing. The crossover happens earlier for 

Equake than for XviD since the load imbalance is less

severe.

3.2.4 Synergy between components 
As mentioned earlier, a key insight from our experience

with implementing McRT was that the individual

components could leverage the integrated design to build

up a useful synergy. We conclude this section by using the

memory manager to quantitatively illustrate this.

We implemented non-blocking and lock-based (blocking)

versions of our memory manager. We compared the two

versions of the memory manager using the well-known

Larson benchmark[50]]; first by running both versions of

the memory manager on top of the McRT scheduler, and 

then by running the two versions on the Windows (Server 

2003) scheduler. Figure 11 compares the  performance of

the benchmark as we increased the number of SW threads

on a 8 processor (16 HW threads) IBMx445 machine. As

the number of SW threads increases, the lock-based version 

on the Windows scheduler expectedly degrades due to

preemption inside critical sections. As also expected from

cooperative scheduling without yields inside  critical 

sections, the lock-based version does not degrade on McRT

as the number of SW threads increases; moreover, it also

outperforms the non-blocking version on the Windows

scheduler once the number of software threads exceeds the

number of hardware threads.

Figure 11: Co-operative scheduling and malloc 

This experiment provides a good illustration of the benefits 

of a holistic design. The non-blocking version requires

very sophisticated algorithms as compared to the blocking

version. A stand-alone memory manager may opt for the

non-blocking implementation; but when integrated with a 

scheduler the blocking version provides the same

properties with a much simpler algorithm.

4. McRT Programmability Enhancements 
The main programmability enhancement in McRT is a 

software transactional memory (STM) library to enable 

transactional programming [35].  To enforce atomicity, the

STM library uses strict two phase locking for writes and 

optimistic read concurrency. It uses an in-place update

scheme and maintains an undo log to rollback aborted

transactions. The STM provides both object-level and

cache line level conflict detection, and supports nested 

transactions with partial rollbacks.  Since the STM module

is not the primary focus of this paper, we refer the reader to

[37] for a complete description. We will briefly show how

it enhances programmability, and focus mainly on how it 

leverages the synergy of the overall system.

Figure 12 illustrates the programmability and scalability

that is enabled through the use of STM instead of lock-

based programming.. This figure compares the

performance of concurrent AVL tree operations (80% 

lookup, and 20% updates) using locks and transactions.

Since the tree gets rebalanced on an update, the rebalancing

locks the root of the tree and hence the locking version

does not scale. The STM algorithm simply replaces the

lock acquire by a transaction begin, and the lock release by 

a transaction end, thus using
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Figure 12: Comparison of STM and locking on AVL tree

exactly the same degree of coarseness in the 

synchronization.  However, the STM performs much better

than the locking algorithm since it benefits from read-

sharing and the automatic extraction of fine-grained

concurrency by the STM library. Note that this

performance benefit comes along with the other benefits of

transactional programming such as deadlock freedom, etc. 

The reader may refer to [37] for more comparisons of lock-

based and transactional programming.

The STM module is a great example of how synergy plays

a key role in the design of McRT. The remainder of this

section describes how the STM module leverages the

remaining parts of McRT.

STM and memory allocator: The STM module relies on 

a tight integration with the memory manager to

communicate both transaction boundaries as well as the set

of pointers accessible from any executing transaction.

While [38] provides a complete description of the issues

involved and the proposed solutions, we illustrate the

synergy with a simple example.

The memory allocator must correctly handle memory

allocation inside transactional code blocks; for example, all

memory allocated inside an aborted transaction should get

deallocated. Moreover, if a nested transaction gets partially

rolled back, only the allocations inside the nested

transaction must be undone. Second, our STM implements

optimistic read concurrency. As shown in [37] this

improves scalability by an order of magnitude. However,

this also imposes constraints on the allocator. Consider the

code sequence in Figure 13 where the function traverses a 

list to find a node with a given key and replace it. 

If we replace the transaction with critical sections, the code 

would work fine. However with optimistic transactions,

multiple threads may simultaneously try to delete a node 

nodeDelete(int key) { 
    ptr = head of list; 
    transaction { 
        while( ptr->next->key != key ) { 
            ptr = ptr->next; 
         } /* end while */ 
     temp = ptr->next; 
     ptr->next = ptr->next->next; 
    } /* validate & end transaction */ 
    free(temp); /* Anyone using temp? */ 
}

Figure 13: Optimistic concurrency and deallocation

with a given key. Therefore, multiple threads could get a 

pointer to the same node (same value of temp). One of the

transactions is going to commit, while the remaining will 

ultimately abort. The committing transaction unlinks the

node, but unfortunately does not know when it is safe to

free the node since some active transaction may still have a 

pointer to it. Therefore, the memory allocator needs to

work closely with the STM module to determine when it is

safe to recycle memory.

STM and scheduler: Almost all current implementations

of software transactional memory use non-blocking

primitives, which imposes a significant performance

overhead. Non-blocking primitives are used to provide

progress guarantees in the face of preemption. In contrast, 

the McRT-STM module uses a lock-based implementation

to avoid the overhead of non-blocking mechanisms, and 

leverages the tight integration with the scheduler to 

provide progress properties. Since the co-operative 

scheduling in McRT makes all preemption points explicit,

the STM and the scheduler work together to provide 2 

properties: (1) if a thread yields the HW processor in the

middle of a transaction, then we set state in the thread’s 

control block to indicate this. Other threads can inspect this

state, and abort a transaction only if it has yielded the

processor. (2) if a thread gets scheduled back in the middle

of a transaction, it first resets the state in the thread’s

control block to indicate it is active, and then checks 

whether it has been aborted before resuming the

transaction. As we show in [37], this provides a significant

performance improvement while still maintaining

preemption safety.

Implementing a high performance transactional memory

module requires tight integration with compiler

optimizations, and a source language transaction construct.

The McRT-STM library exports an interface to enable this 

– we have used this interface to integrate with a Java 

compiler that translates a language-level transaction

construct and performs aggressive optimizations on 

transactional code blocks [36], as well as with a garbage

collector.
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5. Reconfiguring the System Stack Through 

McRT
In this section, we will discuss the McRT support for 

heterogeneity, our final requirement for a large scale CMP

software stack. In particular, we will focus on our

experiences with using McRT to explore a futuristic

configuration of the software stack on large scale CMP

platforms..We believe enabling such a software stack (also

referred to as sequestered mode execution) is one of the

key motivations for supporting heterogeneity. We will use 

a case study of compute intensive workloads as are seen in 

the gaming domain; we used Equake from the Spec2000

suite of benchmarks as a representative compute intensive 

workload. The sequestered system was set up on an IBM

x445 8 way SMP system.

In the sequestered mode, McRT is used as a light-weight

threading system that runs on “bare metal” replacing the 

operating system on a subset of the cores. In this

configuration McRT provides some of the services, such as

scheduling and threading, traditionally provided by an OS.

The sequestered cores act as an accelerator where the 

compute intensive parts of an application can be offloaded.

The OS is still responsible for controlling access to the

sequestered cores and enforcing security policies. Figure

14 illustrates how the system is organized. The underlying 

hardware platform is partitioned into 2 domains. The

operating system runs on one domain (called the host

domain), and McRT runs on the other domain (called the

sequestered domain) without an underlying OS. Note that,

in theory, there is no restriction on the number of domains

that can be created. As discussed before, McRT internally

abstracts the underlying execution resources as logical

processors, and lets an application control affinity, work-

dealing, and other policies with respect to the logical

processors. In the host domain, McRT maps the logical

processors to kernel threads; but in the sequestered domain,

McRT maps the logical processors directly to the 

sequestered processors. This allows for an application to

directly control and co-ordinate the underlying hardware. 

Core 1 Core 2 Core 7Core 0

Lightweight executive

Operating System

McRT (threading, synchronization, mem mgmt
…)

Threaded application

Initialization driver

McRT stub

...

Figure 14: Sequestered mode execution

In our implementation, during bootup, MS Windows

Server 2003 is loaded on one processor, while the other

seven start up in sequestered mode. McRT starts up on the

host processor, and then starts executing on the sequestered

processors. The McRT task queue mechanism is used to 

realize sequestered partitioning. Specifically, two task

queues are set up– one of which (QH) is snooped by the

host processor, the other (QS) is snooped by the remaining

sequestered processors. McRT adds the starting application

thread – the one that will execute the application “main” –

to the sequestered queue QS. In this configuration McRT is

set up not to perform any work-sharing or work stealing.

Hence, any threading abstractions created by the 

application are added to the sequestered queue, and

executed only by the sequestered processors. Similarly, any

abstractions in the host queue are executed only by the host

processors, thus maintaining two separate execution

domains.

The sequestered domain contains a lightweight executive 

that provides only basic interrupt handling features; all of

the threading services such as scheduling, synchronization,

etc. are provided by McRT. During startup, the OS

allocates and pins the memory for the sequestered cores,

which prevents any page faults in the sequestered cores. 

The lightweight executive includes a memory manager that

allocates memory out of the pinned pages. All basic

interactive services such as I/O are provided by the host

domain. The sequestered domain intercepts all service 

requests and passes them onto the host domain. In the

current implementation, the application is recompiled so

that the system/libc calls get re-vectored to wrappers

implemented by McRT. (e.g. a call to fopen would get

translated into sequestered_fopen implemented in

McRT). The system call wrappers leverage the scheduler

API to cause the host processor to execute the call. For 

example consider the following wrapper: 

sequestered_fopen(char* path, char* mode) { 
  FILE* fptr; 
  switchToQueue(hostQueue); 
  fptr = fopen(path, mode); 
  switchToQueue(sequesteredQueue); 
  return fptr; 
}
The first switchToQueue operation causes the current

task to yield the logical sequestered processor and add 

itself to a host queue. A host processor (in our case, the

single host processor) will pick up the task, execute the

system call, and return the task to a sequestered queue 

through the second switchToQueue operation.

Figure 15 shows how Equake performs on the sequestered

system. We first ran Equake on the 8 way system by having

Windows run on all the processors – a conventional SMP

setup. These numbers are reported as “Native” and 

“McRT-OS” – “Native” refers to the performance from

using the Intel OpenMP implementation on Windows, and 

McRT-OS refers to the performance from using McRT

running on top of Windows on the 8 way SMP. McRT-

Sequestered refers to the performance from using McRT in
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sequestered mode with a single host processor and 7 

sequestered processors. All speedups are computed with

respect to the “Native” single thread execution time. Note 

that the sequestered mode execution is much more efficient 

than running on top of an OS. 

The sequestered mode emulates several features of a 

futuristic software stack. First, the application execution

characteristics are different in the two domains: the 

application performs computation on the sequestered

processors, and system calls on the host processors.

Clearly, this can be generalized to other scenarios: e.g. 

serial code on the host processor, and parallel code on the

sequestered processors. Second, an application can control

the utilization of hardware resources in a fine-grained

manner by using the switchToQueue operation. In our 

setup, the
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Figure 15: Equake on sequestered system

application uses it to control only the execution of system

calls, but clearly this can be generalized to enable the

execution of different code regions in different domains.

The sequestered mode also benefits from the tight

integration among the McRT components. The McRT

OpenMP adapter leverages the OpenMP fork-join 

parallelism model to automatically detect serial code

regions. We added calls in our OpenMP adapter to switch

to the host domain in the serial portions, and switch back to

the sequestered domain in the parallel portions. Such 

optimizations would be very helpful if the underlying HW

were heterogenous – for example, an application could

automatically execute the serial portions on cores with

good scalar performance, and parallel portions on 

throughput oriented cores. 

We believe that these experiments are good preliminary

design points  for evaluating how operating systems should

be structured in future many-core platforms. There are

several issues such as isolation, partitioning, etc, that are 

topics for future research. For example, our current 

partitioning scheme is biased towards serving compute

intensive workloads, but the heuristics may need to be

altered for catering to I/O intensive workloads, potentially

allowing for configurations such as [11] on chip..

6. Related Work
Our work was inspired by previous projects in the areas of 

language systems, operating systems design and high

performance computing. Currently, operating systems such 

as Linux and MS Windows treat CMP architectures as a 

SMP on chip[5][6]. This paper shows why such an 

approach does not scale in the large-scale CMP context.

The threading and synchronization primitives provided by

McRT are similar to those seen in traditional user level

threading packages such as pthreads[2], NGPT[3],

NPTL[4] and Capriccio[8]. These primitives can be used to

realize a variety of parallel execution models including

those seen in traditional thread-based and event-based 

programs [10][11][12][13]. The McRT scheduler is

comparable to user level schedulers, that have been 

explored exhaustively in the context of micro-kernels and 

customizable operating systems such as L4[14], 

Exokernel[15], Flux[16], and SPIN[29]. In comparison, the

McRT scheduler is more light-weight, provides a high

degree of configurability, and can be tightly integrated with

language systems [47].

Several operating systems have explored issues related to

performance and scalability on multi-processor platforms

[1][17][18][19][20]. While the McRT framework is similar

in spirit to these projects and learnt from their experiences, 

it is more lightweight and had to address significant

differences in the underlying hardware. We believe the

McRT framework can provide an evolutionary pathway for 

the redesign of operating systems to cater to large scale

CMP architectures. This work is also related to projects

such as Disco[21] and K42[22][23] that explore scalable

operating systems. The primary difference is that our 

system is restricted to shared memory multi-processing that

will be typical on futuristic CMP platforms.

Given the scale of parallelism, our work is also related to

previous research in high performance computing. Light-

weight kernels such as PUMA & Cougar [24][25][26] can 

be considered as closely related projects. In general, as the

number of available processing units increases to 10’s and

100’s, we believe that the system structures will move

closer to these light-weight configurations. Even though

McRT in sequestered mode is similar to the above systems,

there are still two primary differences: first, light weight

kernels are typically customized for single application 

domains, but McRT provides a generic configurable

framework that can easily be customized at different levels

to achieve performance and scalability; second, there are 

significant architectural differences between the hardware 

platforms and it is not obvious if light weight kernels can

directly scale to handle this level of parallelism on a single

chip (single node). Finally, the Piglet system [53] is also
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comparable to McRT in sequestered mode.. The

sequestered mode software stack can be thought of as 

complementary to ongoing research for using hyper-visors

and virtual machine monitors[27][28] to address scalability

on multi-processor platforms.

The McRT framework is also comparable to previous work 

in building language runtimes such as for CILK[30], and

OpenMP[31]. While McRT provides several features that

enable tight integration with programming language

models, it is platform-neutral and thus provides the added 

benefit of portability in addition to customizability and

configurability. Finally, the specific mechanisms used in

the McRT-STM and the McRT memory manager have 

been described elsewhere [37][38], while the compiler

integration has been discussed in [36].

7. Conclusions
This paper presented the design and implementation of 

McRT, the first runtime system targeted at futuristic large

scale CMP platforms. We have shown how the large scale 

CMP platform introduces several novel challenges that

directly affect the design of a system software stack. 

McRT’s design was based on a holistic re-evaluation of the

different components that make up a software stack. These

components were tightly integrated with each other to 

enable good performance and scalability. Experimental

evaluation demonstrates how McRT can be used to scale

almost linearly to 64 HW threads on  workloads that

represent emerging usage models for large scale CMP 

platforms. Finally, we have shown how McRT is being

used to reevaluate the role of the OS on large-scale CMP 

systems, and presented initial encouraging results for such

a system design. 
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