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Abstract
Type systems are used to eliminate certain classes of errors at com-
pile time. One of the goals of type system research is to allow more
classes of errors (such as array subscript errors) to be eliminated.
Dependent type systems have played a key role in this effort, and
much research has been done on them. In this paper, we describe
a new dependently-typed functional programming language based
on two key ideas. First, it makes no distinction between expres-
sions, types, kinds, and sorts—everything is a term. The same in-
teger values are used to compute with and to index types, such as
specifying the length of an array. Second, the term language has a
multivalued semantics—a term can evaluate to zero, one, multiple,
even an infinite number of values. Since types are characterised by
their members, they are equivalent to terms whose possible values
are the members of the type, and we exploit this to express type
information in our language. In order to type check such terms, we
give up on decidability. We consider this a good tradeoff to get an
expressive language without the pain of some dependent type sys-
tems. This paper describes the core ideas of the language, gives
an intuitive description of the semantics in terms of set-theory, ex-
plains how to implement the language by restricting what programs
are considered valid, and sketches the core of the type system.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory

Keywords Dependent types; multivalued term language; Type:Type

1. Introduction
Strong static type systems eliminate errors. Compilers refuse to
compile programs that fail the type discipline, guaranteeing that
those programs that pass the discipline are free of a certain cat-
egory of errors. For mainstream languages that category includes
applying primitive operations to values of inappropriate type, call-
ing something that is not a function, subscripting something that is
not an array, and so on. However, it does not include errors such as
out-of-bounds subscripting or creating red-black trees that do not
satisfy the red-black invariant—these errors can only be checked
dynamically; eliminating them statically is desirable.
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Dependent type systems can be used to eliminate such errors.
Traditional dependent type systems replace the usual pair and func-
tion types with dependent pair and function types. For example, in-
stead of the usual pair type τ1 ∗ τ2, a dependent type system might
have a dependent pair type of the form Σx : τ1.τ2 where τ2 can
refer to the first component of the pair using x, and similarly for
dependent function types. In full generality, if an expression e has
such a dependent pair type then its second projection, e.2, has type
τ2{x 7→ e.1}. Such generality raises two obvious questions: what
does this mean if e can have effects, and how does recursion at
the expression level interact with such a type construct? One way
to answer the former question is to ban effects and have only a
pure language. This approach works fine for a logic or a theorem
prover, but a practical programming language must incorporate ef-
fects in some form. Another approach is to restrict dependency to
values rather than general expressions, and we take an approach
along these lines.

For the latter question, our approach is simply to give up on
the decidability of the type system. Most past proposals for depen-
dently typed languages have had decidability of the type system as
a goal, and so were forced to take a different approach. DML [24]
and later systems [23] achieve dependency by using singleton types
and polymorphism. They add integers and operations on them to
the type level, and an integer sort to the kind level to classify them.
Then the same integer-kinded type variable can be used in two
places to express dependency between the two things being typed,
with universal and existential quantifiers to introduce the type vari-
able. DML also uses constrained polymorphism to add constraints
between type variables allowing more expressive dependency. The
drawback to this approach is that integers are duplicated at the type
level. Dependency through other kinds of values would also require
those kinds to be duplicated at the type level. The programmer may
also, depending upon how much inference can be done, need to
explicitly write the introduction and elimination of polymorphism,
which can become burdensome.

Coq [10], Epigram [1], and Agda [19] all have traditional de-
pendent type systems, but are pure, total, and require the program-
mer to supply explicit proofs in some circumstances. These choices
are quite appropriate for a logic based on the propositions-as-types
principle and theorem provers for them, or for a programming lan-
guage with statically checked termination. However, it can be dif-
ficult to convince the type checker that something is total, and the
additional explicit annotations can be burdensome to the program-
mer. Idris [5] is similar to these systems but is not strictly total.
It includes partiality, totality assertions, postulates, total checking,
and IO and other effects via monads, which give the programmer
more flexibility and results in a more practical programming lan-
guage. It is also a strict language, as is ours.

Our long term goal is a practical programming language tar-
getting programmers for whom the additional effort of writing ex-
tensive annotations and programming at the type level would be
unacceptable. We do not claim to have achieved this goal yet, but



describe the key ideas behind a new approach that anecdotal expe-
rience with prototypes suggests might have the right properties. In
particular, we present a new dependent type system that represents
a new point in the design space from previous work. Our design
uses two key ideas, neither of which is new, but how we use them
to make a dependent type system is, we believe, novel.

The first idea is that we have a single term language rather than
separate languages for expressions, types, kinds, and sorts. Systems
like the λ-cube [3] and λ-calculus with Type:Type [6] are based on
such collapsed term languages and our system has some notable
similarities (particularly with the latter). One important difference
is that instead of one construct for functions, λ, and a separate
construct for types, Π, our language uses the same construct for
both functions and function types. This idea goes back at least to
Nederpelt [18], but is not common in modern languages. Similarly
we use the same construct for both pairs and pair types. The same
integers are used at runtime and for singleton types, array lengths,
etc. We can compute with types just as we compute with values.
This single language gives our system conceptual simplicity, and
we believe is easier for programmers to understand.

The second idea is that terms are multivalued—they can evalu-
ate to more than one value, including none or even an infinite num-
ber. We take the idea from Ontic [15, 16], but similar ideas appear
in other work. In Ontic, terms describe interesting sets of values,
and many set-theoretic constructs are easily expressed. However,
Ontic is not a type system and its goals are different. In other set-
tings, multivaluedness is used for computation, making search and
backtracking implicit and allowing the programmer to concentrate
on expressing what to search for. In our language, runtime com-
putation essentially happens only with single values and building
more interesting sets is instead used to build the type system. To
the best of our knowledge, this is a novel idea.

Of course, there is no free lunch and this generality comes at a
cost, mainly that our system is not decidable. It is possible (actu-
ally quite easy) to write programs that will cause static checking
to diverge. Other mainstream type systems (e.g. Hindley-Milner),
have non-polynomial time complexities, and checking pathologi-
cal programs in those systems is for all practical purposes indistin-
guishable from divergence. The key question for our purposes, is
whether the programs programmers wish to write fall into the de-
cidable fragment of the type system, and how easy it is for them to
fall into the undecidable fragment by accident. Based on our initial
experiences with prototype systems, we believe our language does
well on these criteria. Other systems have made this choice before
us—Cayenne [2] is the first dependent type system we know of
with undecidable type checking.

We begin the paper by describing how some examples are ex-
pressed in our system to motivate what follows. Then we informally
illustrate a core term language, λℵ, still using examples. These ex-
amples show what we mean by a multivalued language, how we use
multivaluedness to represent types, and how we ultimately build
up a dependent type system. We formalise λℵ by giving a deno-
tational semantics that we call the set-theoretic semantics. Unfor-
tunately, the formalisation has an unresolved technical problem, so
we show what we have so far. Also, as explained below, this seman-
tics is not implementable for all terms. Instead of using it directly,
we define an implementation called the runtime for a subset of the
full term language, formalised as a small-step operational seman-
tics. A static process, called the verifier, checks that a program is
in the language subset the runtime is intended to implement. Our
language is strongly typed, and the verifier is also responsible for
type checking—ensuring the absence of runtime type errors. We
informally describe how the verifier works.

Rather than reduce our core language to a minimum and pre-
cisely describe it, we have chosen to use a more comprehensive

core language and spend much of the paper explaining the key un-
derlying ideas and intuitions, leaving less space to precisely de-
scribe our system. We intend this paper to serve as an overview of a
new idea, rather than a detailed formalisation. Thus we only sketch
many parts of the set-theoretic semantics, runtime, and verifier, and
leave a complete formalisation to future papers.

1.1 Other Related Work
There is abundant related work on dependent type systems, of
which the following discussion only touches on a small selection.
Refinement type systems (e.g. Dminor [4]) start with a conven-
tional type system and add refinements, subseting types in a set-
theoretic sort of way; our system similarly builds types up in a set-
theoretic sort of way, but has a single level rather than two levels.
HMC [11] is based on refinement types and infers refinement pred-
icates by observing that these are relations on the variable of the
refined type and the current in-scope variables; one can view our
multivalued terms that represent types as similarly being relations
on the value of type being defined and in-scope variables, and thus
based on their observation, but their system and ours are built dif-
ferently. YTT and Ynot [17] combine dependent typing, logic, and
effects in the same language by separating programs into pure and
computational parts; like DML they have duplication of constructs
and rules across levels. Trellys [13] also combines dependent typ-
ing with general recursion, restricting to values like us; they have
multiple levels and are not yet working on a practical source lan-
guage. Sage [14] also targets a practical language with more error
checking, employing a single term language, refinement types, and
hybrid checking—using dynamic checks when static checks fail—
their system is more conventional than ours, and we seek fully static
checks. F* [21] targets securely verifying program properties in
a practical langauge; it has value-based dependent types and inte-
grates well with the .NET framework. Aura [12] is a dependently-
typed language targeted at security authorisation and has a single
term language. Our use of set-theoretic constructs to build types
and some of the way that our type checking works resembles the
set-theoretic approaches to subtyping [7, 8], but the two are signifi-
cantly different. A very recent work [22] attempts to make Haskell
into a more dependently-typed language, notably they collapse the
kind and term levels.

2. Dependent-Typing Examples
An important motivating example of dependent typing, and one
in which we are particularly interested, is array-bounds checking.
We build up to an extended example by first considering simply a
function that takes a length and an in-bounds index. In our language
that could be written as:1

f(n : Nat, i : Nat < n) = · · ·
This example defines f to be a function with two parameters, n and
i. The syntax : Nat is a term, and terms specify sets of values, in
this case, the natural numbers.2 Writing n : Nat says that nmay be
bound to any value in the set specified by : Nat, that is, that n may
be any natural number. This means that f may only be called with
an actual first argument that is a natural number. Similarly the term
: Nat < n specifies a set of values. In this case it refers to n and
it specifies the set of natural numbers that are less than n. Thus f
may only be called with an actual second argument that is a natural
number and that is less than the first argument. If n is the length

1 This section will use a hypothetical surface syntax that is based on actual
prototype languages we have built. The following sections will describe a
core language that is substantially desugared.
2 The next section will explain in detail why the terms used in the examples
specify the sets we claim.



of some array then i is an in-bounds index for that array. The · · ·
above is also some term, and if f is a function called at runtime3

then it should be a term that specifies exactly one value, namely,
the value the function should compute at runtime when called.

Now consider changing this example to take an array and sub-
script it. That could expressed in our language as:

g(a : [ ]Int, i : Nat < len(a)) = a(i)

Here the term : [ ]Int specifies the set of arrays of integers of any
length. Now i ranges over natural numbers that are less than the
length of a, namely, in-bounds indices for a. Array subscript and
function application use the same syntax in our language and are
statically verified, in this case, to be free at runtime of the out-of-
bounds error.

Next consider elementwise addition of two arrays of integers.
That can be expressed as:

add(a1 : [ ]Int, a2 : [len(a1)]Int) =
arr[len(a1)]i 7→ (a1(i) + a2(i))

Here the term : [len(a1)]Int specifies the set of arrays of integers
of length len(a1) and arr[len(a1)]i 7→ (a1(i) + a2(i)) computes
an array of length len(a1) initialising element i to a1(i) + a2(i).
In this example, both subscripts a1(i) and a2(i) are verified as in
bounds, add can only be called with arrays of the same length, and
the type checker knows the result is an array of that length.

We can also use dependency in data structures to capture some
invariants. Consider for example a compressed sparse row repre-
sentation of square matrices. Such a representation consists of an
array of the non-zero entries of the matrix, an array giving the
columns of these entries, and an array giving for each row and a
sentinel the starting position in the other arrays. We could express
that as:

record{n : Nat,nnz : Nat,nzs : [nnz ]Int,
c : [nnz ]type{:Nat < n},
rs : [n+ 1]type{:Nat ≤ nnz}}

Here the field n is the size of the matrix, nnz is the number of non-
zero entries, nzs those entries, c the columns for the entries, and
rs the row starting positions; : [nnz ]type{:Nat < n} should be
read as all arrays of length nnz of natural numbers less than n. The
example precisely specifies the lengths of the arrays nzs , c, and rs ,
and that c and rs have entries in very specific ranges.

Finally consider multiplying a matrix m from the above type
with a dense vector v of type [m.n]Int, where m.n denotes the
selection of field n from the matrixm. Entry i of that product is the
dot product of row i of m with v, row i starts at rs(i) in nzs and
c and ends before rs(i + 1); nzs gives the value of the entry and
c the column, i.e. which entry of v to multiply with. Thus we can
compute the product as:

arr[m.n]i 7→
sum j = m.rs(i) to m.rs(i+ 1)− 1 of
m.nzs(j) ∗ v(m.c(j))

All the subscripting in this example statically verifies as in bounds,
and the type checker knows the result has type [m.n]Int.

Hopefully these examples give some intuition as to how our
language expresses dependent types. Whereas in conventionally
typed languages the programmer specifies the values a variable
may have by writing a type, and types specify sets of values, in our
language the programmer writes a term, and terms specify sets of
values. Programmers also specify computations by writing terms,
and the term language is as expressive as expression languages
in conventional functional languages. These brief examples and

3 Later we will see that functions are also used to express function types,
and that such functions would not be called at runtime.

explanations probably raise more questions than they answer about
our language, so in the next section we build up a core term
language using a series of examples to explain how the various term
constructs work, what sets of values they specify, and how they can
be used to encode constructs from conventional type systems.

3. Multivalued Language λℵ by Example
The driving intuition behind λℵ is that every term can be thought
of as describing or specifying a set of values. In this section we
introduce the language by example using an informal values[[t]]
function which gives the set of values specified by a term t.

Basics The most basic terms are primitive integer terms, such as
the term 3. As a term, 3 specifies a set containing only a single
value—specifically the integer 3. Hence we say that values[[3]] =
{3}. As usual, there are builtin operations on the integers—hence
3 + 4 describes only the integer 7, that is, values[[3 + 4]] = {7}.
More generally, most terms with multiple subterms have a cross
product semantics, taking any combination of the values of the
subterms. Hence, for a term t1 + t2 we have values[[t1 + t2]] =
{x+ y | x ∈ values[[t1]] ∧ y ∈ values[[t2]]}.
Join A more interesting term is 3 | 4, which specifies either 3 or
4, that is, values[[3 | 4]] = {3, 4}. In general join gives us union
of values, so values[[t1 | t2]] = values[[t1]] ∪ values[[t2]]. Using
the join construct combined with integer addition, we can build up
larger sets; for example, values[[(3 | 4) + (5 | 7)]] = {8, 9, 10, 11}.
Unify We express intersection of sets of values using a construct
called unify, written t1 == t2. For example, values[[(3 | 4) ==
(4 | 5)]] = {4}. In general values[[t1 == t2]] = values[[t1]] ∩
values[[t2]].

Variables and lets A key design decision in the language is that
while the term language is multivalued, variables are always single
valued. A term t specifies a set of values values[[t]]—however,
binding t to a variable x does not bind x to the set values[[t]], but
rather binds x to each of the elements of values[[t]] in turn. For
terms which specify only a single element, this behaves much like
variable binding. For example, the meaning of let(x = 4)(x+3) is
{7}, since the values of 4 include only 4, and so the values of x+3
include only the values which arise from replacing x with 4. In
general, the meaning of the term let(x = t1)t2, can be thought of as
the union of the results of binding x to each value of values[[t1]] in
turn, taking the meaning of t2 under that binding. So for example,
the meaning of the term let(x = 3 |4)(x+x) includes the values 6
and 8 but not 7, since the meaning of x+x is taken with respect to a
single choice of binding for x taken from the set {3, 4} rather than
allowing the choice to be made anew at each use of the variable.

No values An important point is that in addition to specifying
multiple values, a term can also specify no values. We give primi-
tive syntax for such a term since it is particularly useful. The term
falses has no values in its meaning, that is, values[[falses]] = {}.
Note this is unrelated to divergence and type errors—falses is nei-
ther divergent nor erroneous.

Conditions Instead of representing boolean truth values directly,
we instead use multivaluedness, taking the idea of inhabited types
representing true propositions literally—a term with at least one
value is called inhabited4 and represents logical true, and a term
with no values, like falses, is called uninhabited and represents
logical false. The usual logical operations can then be encoded us-
ing existing constructs. Join gives us disjunction—t1 | t2 is inhab-
ited iff either t1 or t2 is inhabited; and pairs (see below) give us

4 Technically, a term with at least one outcome is inhabited, see below for a
discussion of outcomes.



conjuction—(t1, t2) is inhabited iff both t1 and t2 are inhabited
because of the cross product semantics.

Conditionals Given this definition of conditions, the primitive
conditional construct in λℵ simply tests for inhabitance. For ex-
ample, in if (x = 10) 1 else 2 the condition 10 is inhabited and so
the meaning of the conditional is the meaning of the true branch,
yielding 1; whereas in if (x = falses) 1 else 2 the condition falses
is uninhabited and so the meaning of the conditional is the mean-
ing of the false branch, yielding 2. The conditional construct also
binds a variable to each possible value of the condition when it is
inhabited for use in the true branch, collecting up the results using
union as with the let construct.

Comparisons Given our definition of conditionals in terms of
inhabitance, the unify construct already gives us a generic notion of
equality. For example, 3==3 is inhabited (with 3), whereas 3==4
is uninhabited. Other comparisons for integers must be defined
primitively. For example, we define t1 < t2 as specifying all of
the integers in t1 which are less than at least one of the integers
in t2. Of course, if no such integer exists, then the comparison
specifies an empty set. So the term 3 < 4 specifies the set {3},
whereas 4 < 3 is uninhabited, and values[[(3 | 5) < 4]] = {3}
while values[[(3 | 5) < (4 | 6)]] = {3, 5}.
Infinite values As well as terms which specify finitely many
values, there are also terms whose meaning is an infinite number of
values. For example, the term ints specifies the set of all integers,
values[[ints]] = I. Terms such as this one can be combined with
comparisons to yield terms which specify useful subsets of the
integers. The term ints ≥ 0 has the meaning N, and hence specifies
the natural numbers. Further, if we define nats = (ints ≥ 0),
then we can construct a set values[[nats < 10]] = {0, . . . , 9} that
gives a term describing the in-bounds indices of an array of length
10. Another important infinite valued term is the anys term which
specifies the set of all values.

Arrays There are terms for fixed-length tuples which produce
record values mapping indices to values. Thus the term (2, 3) spec-
ifies the set containing the value 〈0 7→ 2, 1 7→ 3〉. Fixed-length tu-
ples also have cross-product semantics, so values[[(3 | 4, 5 | 6)]] =
{〈0 7→ 3, 1 7→ 5〉, 〈0 7→ 3, 1 7→ 6〉, 〈0 7→ 4, 1 7→ 5〉, 〈0 7→
4, 1 7→ 6〉}. Projection from tuples is denoted syntactically via
application to indices. So the term (3, 4)(0) specifies {3} and
(3, 4)(1) specifies {4}. Application of tuples to indices are al-
ways statically checked, and hence out-of-bound indexing such as
(3, 4)(2) is a type error.

There are also terms that specify arrays of dynamic length. The
term arr[10]i 7→ i + 11 specifies the singleton set containing the
length 10 array 〈0 7→ 11, . . . , 9 7→ 20〉. Note there is no difference
between a fixed-length tuple and an array. Both are instances of a
more general notion of tables. Also note that in general the length
is a term, and the type checker verifies that it is a natural number.

Of course, with dynamically-sized arrays, it may not always
be practical to statically check that indices are always within the
bounds of the table. The statically-checked application form used
above, t1(t2), gives a type error if t2 is not in the domain of t1,
and hence we refer to it as error application. In contrast, a second
application form t1[t2] has the property that it is uninhabited (but
not an error) if t2 is not in the domain of t1. We refer to this
as failing application. Intuitively, error application corresponds to
an unchecked subscript, in which the burden of proving that the
index is in the domain falls to the static checker, whereas failing
application corresponds to a checked subscript, in which a dynamic
check of some sort must be done at runtime.

Tables Arrays and tuples are special cases of a more general
construct called tables, which are finite mappings from values to

values. Tuples and arrays are special cases of tables which map
the indices {0, . . . , n − 1} to values where n is the number of
elements in the tuple or array. More general tables are possible and
useful in many programming scenarios, but we do not discuss these
further except as necessary to discuss the encoding of discriminated
unions.

Discriminated unions To encode discriminated unions in λℵ, we
use a form of tables with a single domain value. For example,
to encode inL(3) in λℵ, we use the table term (0 7→ 3), which
specifies the table 〈0 7→ 3〉. Similarly, to encode inR(7) we use
the table term (1 7→ 7), which specifies the table 〈1 7→ 7〉. The
encoding of the case construct relies on the failing-application form
discussed above. Using failing application to project out of the
table, we can see that the meaning of (0 7→ 3)[0] is 3 whereas (0 7→
3)[1] is uninhabited. Similarly, (1 7→ 7)[0] is uninhabited and the
meaning of (1 7→ 7)[1] is exactly 7. Since conditionals branch on
inhabitance, we can thus encode case(t) inL(x1).t1 | inR(x2).t2 as
let(x = t)if (x1 = x[0]) t1 else let(x2 = x(1))t2 for fresh x.

Dependent Tuples Our terms for fixed-length tuples allow for
expressing dependency. In general they take the form (x1 =
t1, . . . , xn = tn) where term tj can refer to previous entries using
the variables x1, . . . , xj−1. So (x = 3, y = x + 1) specifies the
single table 〈0 7→ 3, 1 7→ 4〉, and (x = 3 | 4, y = x+ 1) specifies
the two tables 〈0 7→ 3, 1 7→ 4〉 and 〈0 7→ 4, 1 7→ 5〉.
Functions As with other terms, function terms specify sets of
function values—however, there are some surprising subtleties to
the interpretation of function terms. The intuitive idea is that func-
tion values serve to map values to values, not values to sets of val-
ues. For functions whose bodies are single-valued, this distinction
is largely unimportant. For example, the term fn◦(x = 3)x + 1
specifies the function value whose domain is {3} and that maps 3
to 4. Similarly, fn◦(x = ints)x + 1 specifies the function value
whose domain is the integers and that maps any given integer to
that integer plus one. For each of these examples, there is at least
informally exactly one function value that each function term eval-
uates too, but function terms can be multivalued too. For example,
fn◦(x = ints)ints specifies the set containing every function value
whose domain is the integers and that maps integers to integers (and
there are many such functions). The key point is that this last term
does not specify a function which “returns” the set of all integers,
but rather specifies a set containing all of the functions with the
given domain and range. This distinction is especially noticeable
with terms such as fn◦(x = ints)falses, which rather than speci-
fying a function which returns no result, is instead interpreted as
being uninhabited, that is, values[[fn◦(x = ints)falses]] = {}.

A second key property of functions in λℵ is that a function value
has an explicit domain corresponding to the set of values to which
the function may be applied, and for each value in the domain,
application of the function produces some outcome: either a value,
divergence, or a type error. For values outside of the domain of a
function value, the result of applying the function to such a value
depends on the kind of application used. As with tables, the error
application form commits a type error if the argument is outside of
the domain of the function; whereas the failing application form is
uninhabited if the argument is outside of the domain.

The term language has several kinds of function terms which
differ in the precise set of function values that they specify. The
examples above use the term form that we refer to as invari-
ant functions. In general, an invariant function term has the form
fn◦(x = t1)t2 and specifies all of the the functions whose domain
is exactly values[[t1]] and that maps any value in this set to a value
from the meaning of t2 with x bound to that domain value. We re-
fer to this class of functions as invariant functions since t1 specifies
exactly the domain of the function values that the term specifies.



In contrast, the terms for contravariant functions specify only a
lower bound on the domain. These function terms have the form
fn−(x = t1)t2 and specify all of the functions whose domains
are a superset of values[[t1]] and that map values in values[[t1]] to
a value in the meaning of t2 with x bound to that domain value
(without specifying anything about how the function value behaves
on arguments outside of values[[t1]]). Contravariant function terms
are generally used for normal programming in λℵ as they obey the
usual contravariant argument subtyping rule. Invariant functions
are used for expressing types.

Type representations Intuitively, types are often thought of as
sets of values and terms in our multivalued language essentially
specify sets of values. So at an informal level, one can imagine
using λℵ terms as representations of types. For example, the empty
type which classifies no values is represented by the term falses;
and the type of all values is represented by the term anys. Singleton
types such as S(3) are represented simply by literal terms, in this
case 3. The base integer type can be represented by ints, and ranges
of integers can be represented using comparisons—for example,
nats, nats < 10, and ints ≥ 5 ≤ 20. Similarly, if t1 represents τ1
and t2 represents τ2 then (t1, t2) represents the pair type τ1 ∗ τ2
and (0 7→ t1) | (1 7→ t2) represents the sum type τ1 + τ2. If t
represents the type τ and n is a natural number then arr[n]i 7→ t
represents the type of arrays of length n whose elements have type
τ (where i is fresh); similarly, arr[nats]i 7→ t represents arrays
of type τ (where i is fresh). If t1 represents τ1 and t2 represents
τ2 and x does not occur in t2 then fn−(x = t1)t2 represents the
non-dependent function type τ1 → τ2.

Thus, all first-order types that make sense for our language can
be represented as terms in the language. More interesting types can
be represented as well. For example, (x1 = ints, x2 = ints < x1)
represents the type of all pairs of integers where the second is less
than the first. Similarly, fn−(x = ints)ints < x represents the
type of functions taking integers to integers less than the argument.
Quite a number of interesting dependent product and function types
are expressible in our term language.

Types The representations of most interesting types make use of
multivalued terms. In order to support computation over types it
is necessary to be able to encode type representations as single
values. For example, while the term fn−(x = ints)ints represents
the set of all integer to integer functions, introducing a name for
ints via naive variable binding does not do the right thing. The
term let(y = ints)fn−(x = y)y no longer represents the type of all
integer to integer functions, but rather the set of all functions whose
domain is a single integer i and which map i to i.

The solution to this problem is to “wrap” types up as a single
value in the term language employing a simple trick similar to
previous work using retractions to define types [6]. In the case of
λℵ, a type is an identity function whose domain is the values of the
type. For example, fn◦(x = ints)x is a term that specifies exactly
one value, the function whose domain is the integers and that maps
each integer to itself. The syntactic sugar type{t} is shorthand for
fn◦(x = t)x where x is fresh. Thus type{falses} is a single value
for the empty type, type{3} is a single value for the singleton 3
type, type{nats} is a single value for the type of natural numbers,
and so on. The Int of the previous section is actually definable in
our language as type{ints}.

To make types useful, there are two further term forms. The
term types specifies the set of all types,5 that is, all of the function
values that are identity functions. Syntactic sugar Type stands
for type{types}, namely the type of types. Finally, the term :t

5 If we have a third kind of function then we can define types, but to keep
things simple, we will leave types as a primitive term.

“unwraps” the encoding by extracting out the domains of all of the
identity functions specified by t; if t includes something that is not
an identity function then :t gives a type error. We call this operation
“from”, and it allows us to convert a type back into a multivalued
term from the members of the type.

Using these constructs, we can now bind type representations
to names with the correct semantics by wrapping and unwrapping
types. For example, the term let(y = type{ints})fn−(x = :y):y
specifies the set of all integer to integer functions, as desired.

Type computation Since types can be encoded as values in the
language, they can be computed on in a completely general fashion.
As a simple example, the function

fn−(x = (types, types))type{(:x(0), :x(1))}
takes any two types and returns the type of pairs whose compo-
nents have those two types. Specifically, x will be bound to a
pair of types, x(0) is the first of these, :x(0) any element of it,
(:x(0), :x(1)) is a pair of an element from the first type and an el-
ement of the second type, and wrapping that with type turns it into
the type of such pairs. In a similar fashion, it is possible to write any
type constructor from typical Fω like languages (that is, Fω without
polymorphism—see Section 7 for a discussion of polymorphism).
The previous section used the prefix operator [ ], which is definable
as fn−(t = types)type{arr[nats]i 7→ :t}—namely, it takes a type
and returns the type of all arrays whose elements are in that type.

Programs Finally, our intention is to use multivaluedness only to
specify type information, and a program in our core language is a
term that specifies a singleton set, namely the single value the pro-
grammer wants computed. Similarly, the functions that are called
at runtime must have bodies that specify a single value. Terms that
specify sets of zero or one value arise in the condition subterms of
conditionals, but terms that specify sets of other cardinalities are
used only to describe type information and are never run.

4. Set-Theoretic Semantics
The examples of the previous section are intended to show the po-
tential of λℵ—combining in a useful way traditional typing with
a set-theoretic intuition and potentially enabling practical depen-
dent typing. In this section, we start formalising λℵ. We do not
have enough space to fully describe this formalisation and it is
in any case not yet completely figured out, so we will show only
some of the details of what we have so far. This section defines
the set-theoretic semantics, a kind of denotational semantics, which
makes clear what a term means. This semantics is not directly im-
plementable, so in the next section we explain how to select a sub-
language that is implementable and how to realise that implemen-
tation.

As with any denotational semantics, we need to define semantic
domains that serve as the meaning of terms and define a meaning
function that maps a term to its meaning. The main semantic do-
mains for λℵ are values and outcomes, defined below. The main
meaning functions are outcomes and isin . The first maps a term
to a set of outcomes. The second tests whether a given value is one
of the values specified by a given term. It cannot just be defined in
terms of outcomes because, as explained more below, it must com-
pute the test and might diverge while doing so. The definitions of
these functions requires some machinery to present clearly. Rather
than develop all that machinery and show the full two definitions,
instead we will present a restriction of outcomes to values—the
function values that we used informally in the previous section.
This function is much easier to describe, and additionally the in-
tuition of λℵ is actually much more apparent in its definition since
outcomes and isin are somewhat obscured by details of evaluation
sequencing. The derivation of this function from outcomes is made



values[[x]]ρ = {ρ(x) | x ∈ dom(ρ)}
values[[falses]]ρ = {}
values[[anys]]ρ = {v | v ∈ V }
values[[i]]ρ = {i}
values[[ints]]ρ = {i | i ∈ I}
values[[uop t]]ρ = {uop i | i ∈ values[[t]]ρ}
values[[t1 bop t2]]ρ = {i1 bop i2 | i1 ∈ values[[t1]]ρ ∧ i2 ∈ values[[t2]]ρ}
values[[t1 cop t2]]ρ = {i1 | i1 ∈ values[[t1]]ρ ∧ i2 ∈ values[[t2]]ρ ∧ i1 cop i2}
values[[(x1 = t1, . . . , xn = tn)]]ρ = {〈0 7→ v1, . . . , n− 1 7→ vn〉 | ∀1 ≤ j ≤ n : vj ∈ values[[tj ]]ρ{x1 7→v1,...,xj−1 7→vj−1}}
values[[(i 7→ t)]]ρ = {〈i 7→ v〉 | v ∈ values[[t]]ρ}
values[[arr[t1]x 7→ t2]]ρ = {〈0 7→ v1, . . . , n− 1 7→ vn〉 |

n ∈ values[[t1]]ρ ∧ ∀1 ≤ j ≤ n : vj ∈ values[[t2]]ρ{x 7→j−1}}
values[[tabs]]ρ = {st | st ∈ Tb}
values[[fn◦(x = t1)t2]]ρ = {sf | ∀v ∈ V : sf .1(v) = isin(t1, ρ, v) ∧

(isin(t1, ρ, v) = id =⇒ ∃o ∈ O : sf .2(v) = o ∧ o ∈ outcomes[[t2]]ρ{x 7→v})}
values[[fn−(x = t1)t2]]ρ = {sf | ∀v ∈ V : isin(t1, ρ, v) = id =⇒

sf .1(v) = id ∧ ∃o ∈ O : sf .2(v) = o ∧ o ∈ outcomes[[t2]]ρ{x 7→v}}
values[[funs]]ρ = {sf | sf ∈ F}
values[[types]]ρ = {ty | ty ∈ Ty}
values[[len(t)]]ρ = {n | sa ∈ values[[t]]ρ ∧ sa ∈ A ∧ dom(sa) = {0, . . . , n− 1}}
values[[t1(t2)]]ρ = {v | st ∈ values[[t1]]ρ ∧ st ∈ Tb ∧ v2 ∈ values[[t2]]ρ ∧ v2 ∈ dom(st) ∧ v = st(v2)}

∪{v | sf ∈ values[[t1]]ρ ∧ sf ∈ F ∧ v2 ∈ values[[t2]]ρ ∧ sf .1(v2) = id ∧ v = sf .2(v2)}
values[[:t]]ρ = {v | ty ∈ values[[t]]ρ ∧ ty ∈ Ty ∧ ty .1(v) = id}
values[[t1 | t2]]ρ = values[[t1]]ρ ∪ values[[t2]]ρ
values[[t1 == t2]]ρ = values[[t1]]ρ ∩ values[[t2]]ρ
values[[let(x = t1)t2]]ρ = ∪v∈values[[t1]]ρvalues[[t2]]ρ{x 7→v}

values[[if (x = t1) t2 else t3]]ρ =

{
values[[let(x = t1)t2]]ρ outcomes[[t1]]ρ 6= {}
values[[t3]]ρ outcomes[[t1]]ρ = {}

Figure 1. The Value Part of the Set-Theoretic Semantics

precise in the second subsection below, but Figure 1 can be viewed
informally as providing its definition. Rather than give an explicit
grammar for λℵ, we leave the grammar implicit in Figure 1.

4.1 Semantic Domains
In most languages, an expression evaluates to a value, evaluates to
a type error, or diverges—we calls these possibilities outcomes. In
λℵ, the meaning of a term is a set of outcomes. In λℵ, a value
is either an integer, a table, or a function. Note that tables and
functions are disjoint. A table has a domain that is, for this paper,
a finite subset of the integers and has, for each domain integer, a
corresponding range value. A function has a domain that is a subset
of the values and for each domain value has a corresponding range
outcome. Thus, our semantic domains are something like:

V = I + (I fin→ V ) + (V ⇀ O)
O = V + {⊥, err}

In standard set theory, these equations have no solution as V ⇀ O
has greater cardinality than V . The usual approach is to seek CPOs
and restrict to continuous functions; domain theory then has stan-
dard techniques for solving equations like those above. However,
for a long time we still could not find a satisfactory overall seman-
tics. Recently, we realized a key insight—namely, that testing if
a value is in a function’s domain should be computable, that is,
such tests rather than evaluating just to in or out, might instead di-
verge or commit a type error. Thus we should model our semantic
functions as pairs of a domain-test function and a range funtion.
The domain-test function takes a value and returns a member of
{⊥, err, nid, id}, where ⊥ means the test diverges, err means the
test commits an error, nid means the value is not in the domain,
and id means the value is in the domain. The range function takes
a value and returns an outcome, that in the case the value is in the

domain is the result of applying the function. These modifications
lead to these equations:

V = I + Tb + F

Tb = I fin→ V
F = [V → DT ]× [V → O]
DT = {⊥, err, nid, id}
O = V + {⊥, err}

We solve these equations using slightly modified techniques from
domain theory—we wish to have cyclic structures and so we model
tables using regular infinite trees rather than finite trees as is stan-
dard. Unfortunately, these modifications are not enough. Some syn-
tactic function terms that we expect to be inhabited in fact have
no semantic functions in their meaning because the semantic func-
tions we expect to be there are in fact not continuous. Resolving
this technical issue remains to be solved.

For the rest of this section we ignore this issue and proceed as
if the above were the right semantic domains, since we feel that
the meaning functions serve to illuminate the intended semantics
of the language even if the domains are not yet quite right. Let A
be the subset of Tb that are arrays, that is, have domains of the
form {0, . . . , n− 1}. Let Ty be the subset of F that are types, that
is, whose range function is λv.v.

Terms have free variables and so their meaning is relative to an
environment, which for λℵ, are finite maps from variables to values
reflecting both which variables are in scope and the single-valued
nature of variables. Metavariable ρ ranges over environments of the
set-theoretic semantics.

4.2 Value Semantics
As mentioned previously, the main definitions of meaning are the
outcomes and isin functions. If t is a term and ρ is an environment



then outcomes[[t]]ρ is a subset of O, namely t’s outcomes. If t is
a term, ρ is an environment, and v is a value then isin(t, ρ, v)
is a member of DT . Having defined these functions, we define
values[[t]]ρ = outcomes[[t]]ρ ∩ V , namely the restriction of t’s
meaning to just the values. Figure 1 can then be shown to be a
theorem (as opposed to an informal definition).

Figure 1 uses a number of metavariables: x ranges over vari-
ables, t over terms, i over integers, n over natural numbers, uop
over unary operations on the integers, bop over binary operations
on the integers, cop over comparison operators (of the integers), v
over V , o over O, st over Tb, sa over A, sf over F , and ty over
Ty .

Both error and failing application have the same value seman-
tics, so we show only error application, however, their meanings
differ in error behaviour. Also note that conditionals test absence
of outcomes not absence of values—if the condition diverges then
so does the conditional.

5. Runtime
The set-theoretic semantics presented in the previous section is
very intuitive, but unfortunately, it is not realisable on a conven-
tional computer. For starters, the semantics of t1 == t2 implies
that the implementation can decide the equality of functions, some-
thing that is undecidable. It is also unclear how to implement mul-
tivaluedness in general. One could use backtracking in some cases,
or generate lists of result values, but all of these options are more
expensive than a conventional single-valued language. We intend
multivaluedness to express type information, but not actual com-
putation, and would rather not pay an implementation cost to sup-
port multivaluedness. Additionally, it is not clear how multivalued-
ness should interact with computational effects like mutation and
IO. Thus the implementation of the language does not fully follow
the set-theoretic semantics but instead implements a subset of the
full term language. We call the actual implementation of the lan-
guage, the runtime, and in this section we formalise the runtime.
One should think of this formalisation as an operational semantics
for the language.

The overall strategy is to exploit a static analysis called the ver-
ifier to reject programs that cannot be effectively realised, allowing
the runtime to only address the set of programs satisfying the in-
variants enforced by verification. As with a standard type checker,
the verifier is responsible for detecting and rejecting type errors in
programs. However, the verifier must also detect and reject pro-
grams which cannot be realised by the runtime. Most importantly,
these include programs that potentially compare function values, or
require runtime computation of terms with more than one value.

Of course, not all uses of multivaluedness should be rejected.
There are several key uses of multivalued terms that must be sup-
ported, and these uses drive much of the design of the verifier and
runtime. In the first place, terms which do not need to be run (such
as those serving in the role of types) can be multivalued. Second,
our conditionals, comparisons, and encoding of sum types are fun-
damentally based on the distinction between an inhabited and un-
inhabited term. Thus the runtime must support the special case of
terms that have zero or one values. This is easily implementable in
a natural way using exceptions. A term with zero values is said to
fail, and causes a failure exception to be raised. Conditionals in turn
catch this exception and execute the false branch of the conditional.

Finally, some uses of terms of more than one value can be given
a reasonable runtime interpretation. Consider for example the term
t1 == t2. If we were to fully restrict this to single valued terms, we
might compute its value by computing single values for each of t1
and t2 and then comparing these two values for equality. However,
we can achieve greater expressiveness by only requiring that one of
the two terms be single valued in many cases. For example, having

computed a single value v for t1, it is often feasible to test whether
v is a member of the (potentially) multiple values specified by t2,
using the structure of t2 to guide the membership test. For example,
if t2 is the term ints we can just check that v is an integer. For the
term t21 | t22 we can check if v is a value of t21 and if not check
if it is a value of t22. For the term (t21, t22) we can first check that
the value is a pair, and if so check that the respective components
of the pair are possible values of t21 and t22 respectively. There are
limits to this strategy of course. For more general terms, we must
fall back to requiring a single value for t2. For example, to check
if v is a value of let(x = t21)t22 we need to first compute a single
value for t21, bind that to x, and then check if v is a member of
the (again possibly multivalued) term t22. Finally, for terms such
as t21(t22), we really have no choice but to compute a single value
for this term and do an equality test.

This special treatment of unification motivates a key point in
the design of the runtime. In particular, the runtime has two modes
called generate and test. Each subterm of the program is statically
classified as a generate term, a test term, or an unevaluated term.
Generate terms must be zero or one valued, and the verifier will re-
ject the program if they are not. Test terms can have more than one
value, but the verifier must still check that no function comparison
is done. Unevaluated terms can be arbitrary.

In the rest of this section, we formalise the runtime as an abstract
machine with a small-step reduction relation. Since this is mostly
straightforward and there are many details, we only show a few
reduction rules to illustrate how they operate. A complete and
formal treatment of the runtime can be found in an accompanying
technical report [9].

5.1 Abstract Machine
The abstract machine of the runtime consists of three parts: a term
to be evaluated, an environment that maps the term’s free variables
to head labels, and a head heap that maps head labels to heads.
Heads are the value form for terms and have three forms: integers,
tables, and functions. Sub-components of heads are indirected via
head labels which index into the head heap. The machine operates
over a slightly extended set of terms, which include head labels, a
frame form, and a test mode form which is explained further below.
The syntax of the abstract machine is as follows:

t ::= · · · | ` | σ(t) | ` ∈ t1 B t2 else t3
σ ::= x1 = `1, . . . , xn = `n
dk ::= − | ◦
h ::= i | 〈i1 7→ `1, . . . , in 7→ `n〉 | (σ, fndk (x = t1)t2)
HH ::= `1 = h1, . . . , `n = hn
M ::= (HH ;σ; t)

5.2 Machine Reduction Rules
The reduction rules for the abstract machine have the forms M1 7→
M2, which means thatM1 steps toM2 in one step;M 7→ F, which
means thatM fails in the next step; andM 7→ E, which means that
M commits a type error in the next step. As there are many rules
for the language we treat here, and most of these are standard, we
present, in Figure 2, only a few of the novel rules to illustrate the
novel aspects such as failure, failure application, and test mode. All
the rules can be found in the technical report.

Generate Mode A few points are worth noting about generate
mode. The term falses fails immediately. The terms anys, ints,
tabs, funs, types, :t, and t1 |t2 might have more than one value, and
so reduce to a type error in generate mode. Failure application has
two interesting cases. If the LHS is a table and the RHS is not in the
domain of the table then it fails. If the RHS is an invariant function,
then the runtime must first check if the RHS is in the domain of
that function. It does this using a test-mode term, explained shortly.



(HH ;σ; falses) 7→ F (HH ;σ; anys) 7→ E

HH (`1) = i1 HH (`2) = i2 i1 cop i2

(HH ;σ; `1 cop `2) 7→ (HH ;σ; `1)

HH (`1) = i1 HH (`2) = i2 ¬(i1 cop i2)

(HH ;σ; `1 cop `2) 7→ F

HH (`) = i i ≥ 0 y /∈ fv(t)

(HH ;σ; arr[`]x 7→ t) 7→ (HH ;σ; (y = let(x = 0)t, . . . , y = let(x = i− 1)t))

HH (`) = 〈0 7→ `1, . . . , n− 1 7→ `n〉
(HH ;σ; len(`)) 7→ (HH ;σ;n)

HH (`1) = 〈i1 7→ `′1, . . . , in 7→ `′n〉 HH (`2) = h h /∈ {i1, . . . , in}
(HH ;σ; `1[`2]) 7→ F

HH (`1) = (σ′, fn◦(x = t1)t2)

(HH ;σ; `1[`2]) 7→ (HH ;σ;σ′(`2 ∈ t1 B let(x = `2)t2 else falses))

(HH ;σ; :t) 7→ E (HH ;σ; t1 | t2) 7→ E (HH ;σ; `== t) 7→ (HH ;σ; ` ∈ t B ` else falses)

(HH ;σ; if (x = `) t else t′) 7→ (HH ;σ; (σ, x = `)(t))

(HH ;σ; t1) 7→ F

(HH ;σ; if (x = t1) t2 else t3) 7→ (HH ;σ; t3)

(HH ;σ; ` ∈ falses B t1 else t2) 7→ (HH ;σ; t2) (HH ;σ; ` ∈ anys B t1 else t2) 7→ (HH ;σ; t1)

HH (`) = i

(HH ;σ; ` ∈ ints B t1 else t2) 7→ (HH ;σ; t1)

HH (`) = h h not an integer
(HH ;σ; ` ∈ ints B t1 else t2) 7→ (HH ;σ; t2)

HH (`) = 〈i 7→ `′〉
(HH ;σ; ` ∈ (i 7→ t) B t1 else t2) 7→ (HH ;σ; `′ ∈ t B t1 else t2)

HH (`′) = (σ′, fn◦(x = t3)t4)

(HH ;σ; ` ∈ :`′ B t1 else t2) 7→ (HH ;σ; ` ∈ σ′(t3) B t1 else t2)

(HH ;σ; ` ∈ t3 | t4 B t1 else t2) 7→ (HH ;σ; ` ∈ t3 B t1 else ` ∈ t4 B t1 else t2)

(HH ;σ; ` ∈ t3 == t4 B t1 else t2) 7→ (HH ;σ; ` ∈ t3 B ` ∈ t4 B t1 else t2 else t2)

Figure 2. Selected Reduction Rules

Finally, unifying a head label with another term reduces to a test-
mode term to check that the LHS value is in the RHS term and if
so to return the LHS value, and otherwise to fail.

Test Mode Test mode is formalised as the test term ` ∈ t1 B
t2 else t3. This term is generated by the runtime to check whether
the value given by ` is one of the values the term t1 specifies. In the
case that it is, it should reduce to t2, otherwise it should reduce to
t3.

We show a few cases to illustrate how this works. Testing
against falses always fails whereas against anys always succeeds.
Testing against ints just tests whether the value is an integer or
not. Testing against (i 7→ t) first checks that the value has the
head form 〈i 7→ `′〉 and then tests value `′ against t. Testing one
value against a from of a second value that is an invariant identity
function, that is, a type, tests the first value against the domain term
of the type. Testing against a unification tests against the LHS term
and if that succeeds tests against the RHS term otherwise fails.
Similarly, testing against a join tests against the LHS term and if
that fails tests against the RHS term otherwise succeeds.

Program Evaluation A program evaluates according to these
rules, which show the initial machine and that programs cannot
have zero values.

(ε; ε; t) 7→∗ (HH ; ε; `) HH (`) = i

t ⇓R i
(ε; ε; t) 7→ · · ·

t ⇑R
If neither rule applies then t ⇓R E.

6. Verifier
λℵ is a statically typed language and a static checking process
checks for and rejects programs that might commit type errors at
runtime. Since the runtime only correctly implements a subset of
the term language, this static checking process must also check
for and reject programs not in the subset addressed by the the
runtime—that is, the subset where the runtime and set-theoretic se-
mantics agree. This static checking process is called the verifier.
The verifier checks for and rejects type errors including traditional
ones (applying integers, adding functions) and out-of-bounds sub-
scripting errors. The verifier also checks for and rejects programs
which compare functions, or in which terms of more than one value
occur while in generate mode.

We start by informally describing how the examples in Section 2
are checked for type errors. Then we describe the structure of the
verifier, giving examples to motivate each piece, describe a number
of the details, and, in particular, describe set containment, a key
component of the verifier.

6.1 Examples
To a first approximation the verifier makes one pass over the pro-
gram computing along the way a representation of the set of values
of each subterm. It uses these sets to check for errors that might
arise at each subterm. Consider again the first example from Sec-
tion 2:

f(n : Nat, i : Nat < n) = · · ·



In this example, the first : Nat will verify as free of errors and result
in the set of values:

{`1 = ints, `2 = `1 ≥ 0}.`2
The meaning of this set is as follows: if `1 is bound to an integer,
and `2 is bound to the same integer, and if that integer is greater
than or equal to zero, then the integer bound to `2 is in the set;
no other values are in the set. Thus the set describes exactly the
natural numbers. This set will then be put into the context used to
type check subsequent code with n bound to `2. The second : Nat
similarly verifies with set:

{`3 = ints, `4 = `3 ≥ 0}.`4
The term n verifies with set:

{}.`2
One should read this set as the singleton set of the value bound to
`2 (by the context). Next, to check that< does not commit an error,
the verifier must verify that the two subterms are integers. It forms
the set {`5 = ints}.`5 describing all integers and asks if the sets of
the two subterms are contained in this set. Since these sets describe
integers, the verifier constructs formulas about integers and asks a
theorem prover if those formulas are true. In this case it produces
these formulas respectively (simplified):

∀i3, i4 ∈ I : i4 = i3 ∧ i4 ≥ 0 =⇒ ∃i5 ∈ I : i5 = i4
∀i1, i2 ∈ I : i2 = i1 ∧ i2 ≥ 0 =⇒ ∃i5 ∈ I : i5 = i2

Clearly both these formulas are true, so verification succeeds and
produces the set (for the < subterm):

{`3 = ints, `4 = `3 ≥ 0, `6 = `4 < `2}.`6
This set describes the natural numbers less than `2. To type check
the body of f , this set is also placed into the context and i bound to
`6. Checking the body of the function might (for example) incur the
requirement that i needs to be in bounds for an array of length n.
In this case, the verifier will essentially have to check the following
clearly true formula:

∀i2, i4, i6 ∈ I :
i2 ≥ 0 ∧ i4 ≥ 0 ∧ i6 = i4 ∧ i6 < i2 =⇒ 0 ≤ i6 ∧ i6 < i2

Now consider the second example from Section 2:

g(a : [ ]Int, i : Nat < len(a)) = a(i)

The term : [ ]Int verifies with set:

{`7 = ints, `8 = `7 ≥ 0, `9 = [`8]`10.{`11 = ints}.`11}.`9
One should read this set as: if `8 is bound to a natural number, `9
is bound to an array of that length, and any element of the array is
in the set {`11 = ints}.`11 when `10 is bound to its index then that
array is in the set. That is, it describes the set of arrays of integers
of any length. Verifying the term len(a) requires checking that a is
an array. The verifier forms the set

{`12 = ints, `13 = `12 ≥ 0, `14 = [`13]`15.{`16 = anys}.`16}.`14

and asks if the previous set is contained in it which it is. The result
of len(a) is described by the set:

{`17 = len(`9)}.`17

Next, : Nat < len(a) verifies with set:

{`18 = ints, `19 = `18 ≥ 0, `17 = len(`9), `20 = `19 < `17}.`20

To verify g’s body, the verifier first verifies the subterms to get the
sets {}.`9 and {}.`20. Next it must look at the possible values of
`9 and confirm that each can be applied (are tables or functions)
and that i is in their domain. In this case, `9 is an array, which is

applicable. To do the domain test, the verifier forms a set describing
the valid indices of `9:

{`21 = ints, `22 = `21 ≥ 0, `23 = `22 < `8}.`23

and asks if {}.`20 is contained in this set, leading to the formula:

∀i8, i17, i18, i20 ∈ I :
i8 ≥ 0 ∧ i17 = i8 ∧ i18 ≥ 0 ∧ i20 = i18 ∧ i20 < i17 =⇒
∃i23 : i23 ≥ 0 ∧ i23 < i8 ∧ i23 = i20

This formula is true.

6.2 Verifier Structure
Our verifier is similar to a conventional type checker but has a few
twists. Such type checkers are often expressed as a set of syntax
directed algorithmic rules, with one rule for each construct of the
expression language. These rules take a typing context—a mapping
of the variables in scope to their types—and output the type of
the expression. In our language there is not a syntactic notion of
type; instead we describe the set of values that each variable might
take and that each term specifies. The language for describing these
sets is quite rich, but not as expressive as the term language itself.
We use a level of indirection in describing sets of values, much
like the runtime does in describing single values. So a context
might be `1 = ints;x = `1;T, which says that x is in scope
and bound to some integer. Contexts also capture dependencies
between variables, so `1 = ints, `2 = `1 + 1;x = `1, y = `2;T
says that x is in scope and is some integer and y is in scope and
is whatever x is plus one. Contexts also capture conditions that
must hold, both through the value descriptions and through a side
condition. For example, `1 = ints, `2 = ints, `3 = `2 < `1;x =
`1, y = `3;T says that x and y are integers and that y is less than
x; and `1 = ints, `2 = 0;x = `1; `1 > `2 says that x is an
integer and is greater than zero. The first form arises naturally from
conditions in ifs and is used to type check true branches, whereas
the second form is used to capture the negation of a condition while
type checking false branches.

Similarly, the outputs of our rules describe sets of values in a
similar way. For example, the term 5 would type check and output
the set {`1 = 5}.`. These output sets can depend upon the input
contexts, for example, in the context `1 = ints;x = `1;T the term
x + 1 would type check and produce the output set {`2 = 1, `3 =
`1 + `2}.`3.

The rules in conventional type checkers follow a common pat-
tern, for example, consider the rule for application for a non-
dependent type system:

Γ ` f : τ1 ` τ1 ≤ σ1 → σ2 Γ ` a : τ2 ` τ2 ≤ σ1

Γ ` f(a) : σ2

Here both subexpressions are type checked. One expression is
required to be a subtype6 of a particular form of type (a function
type), subtyping relations are required to hold between specific
parts of the types (argument type a subtype of parameter type), and
various pieces of types are combined (here just the function result
type) to make the output type. Our rules follow a similar pattern
except that the role of types is played by descriptions of sets of
values; hence subtyping for us is subsets of values, a judgement
we call set containment, which is the heart of the system and where
most of the interesting properties get checked. The analogy to types
does not fully hold: the analogous concept to requiring a type
to have a particular structure via subtyping works out somewhat
differently in our system, but we lack space to describe this in
detail.

6 Many systems use equality rather than subtyping, but we can think of
equality as just a limited form of subtyping.



Of course, our system is dependent, and a typical application
rule in a dependent type system might look more like this:

Γ ` f : τ1 ` τ1 ≤ Πx : σ1.σ2 Γ ` a : τ2 ` τ2 ≤ σ1

Γ ` f(a) : σ2{x 7→ a}
The function result type σ2 depends upon the actual argument
through variable x, so the output type is σ2 with x replaced by the
actual argument a. In our system, function types are actually func-
tions themselves. To perform the substitution then, we essentially
just apply the function and compute the result. This recomputation
of the values of the body is very similar to type checking, but with-
out any error checking, and the result is essentially analogous to
running a piece of the program.

Thus, we can think of the verifier as having two modes, verifica-
tion and running. Both modes do a certain amount of processing to
determine the values the term specifies (and some other stuff like
effects). Verification mode, in addition, does extra processing to
check for errors. Every subterm of the program is verified exactly
once, and might be run zero or more times.

Unfortunately, a problem arises with this strategy. A prime
example is recursion. To check factorial (in surface syntax):

fact(n : Int) = if(n ≤ 1)1 else n ∗ fact(n− 1)

The verifier will check the body with fact bound to this function
and n bound to an abstract integer. This checking will eventually
get to fact(n−1), which will run the body of this function with n
bound to an abstract natural number, which will eventually run the
body with n bound to an abstract positive number, and so on. Thus
the verifier gets into an infinite loop.

To address this issue, we provide the programmer with a con-
struct to cut the verifier off, called stage. In this example, the pro-
grammer would write in the surface syntax:

fact(n : Int) : Int = if(n ≤ 1)1 else n ∗ fact(n− 1)

which desugars into (simplifying a bit):

fact =
fn−(n = ints)S(ints, if ( = n ≤ 1) 1 else n ∗ fact(n− 1))

Note that what looks like a return type annotation (:Int) turns
into the stage construct S(ints, . . .); type annotations on variable
declarations act similarly. The verifier proceeds as before, but when
it runs the body for the recursive call, it runs the left subterm of the
stage, ints, and uses that as the result of the stage. This captures the
fact that the result of the recursive call could produce any arbitrary
integer. In this way the verifier is prevented from looping by cutting
off the recursion with a sound approximation of the actual result of
running the function. Of course, for this approximation to in fact be
sound, the verifier must do some checking when it verifies a stage
cosntruct.

More concretely, stage works as follows. The runtime treats
S(t1, t2) as if it were simply t2. The verifier on the other hand
treats the stage as if it were simply t1. This is correct so long as the
values t2 specifies are a subset of the values the verifier thinks t1
specifies. Thus, when running the stage, the verifier just runs t1 and
uses that as the result. When verifying the stage, it verifies both t1
and t2, checks that t2’s set is contained in t1’s set, and uses t1’s set
as the result. This treatment is similar to the conventional treatment
of type annotations as in the rule:

Γ ` e : τ ′ ` τ ′ ≤ τ
Γ ` (e : τ) : τ

Now, in making value set descriptions, the verifier cannot al-
ways be completely accurate, but must in some instances approx-
imate the possible values. In most contexts this is fine so long as
the approximation is an upper bound—that is the verifier computes

a set that is a superset of the actual values that might be computed
by the runtime. In some contexts however, an upper bound is not
sufficient for correctness. For example, in an application we need
to check that the actual argument is in the domain of the function
being called. If we have an upper bound on the actual argument and
a lower bound on the domain term of the function then it is sound to
check set containment between these two sets, but if we only have
an upper bound on the domain then the check is unsound. Rather
than computing both a lower bound and an upper bound, the verifier
instead computes a flag that says whether the set is exactly the val-
ues the term specifies or just an upper bound on that set. In certain
places (e.g domain terms) the verifier requires the set computed to
be exact, rejecting the program otherwise. This requirement limits
the expressivity of domain terms.

As mentioned earlier, in addition to doing type checking the
verifier must also reject programs the runtime does not correctly
implement. Specifically, it must reject multivalued terms in gen-
erate positions and any function comparisons. To implement the
former, the verification algorithm also takes a flag (called a run-
time context), indicating whether the term is generated, tested, or
not evaluated. Terms like ints, tabs, :t, and t1 | t2 are rejected if in
the generate runtime context. For the latter the rules for unify and
failing application must check, except in the unevaluated runtime
context, for the possibility of function comparison and reject such
subterms. This checking can be done using fairly crude syntactic
checks.

To make computation of conditions as tight as possible, we need
to know if the condition is inhabited or not. To do this we compute a
decidability as well as a representation of its values. We say a term
is true if it always is inhabited. We say a term is false if it always
is uninhabited. We say a term is decidable if it might or might not
be inhabited or we do not know which is the case. In running a
conditional, if the condition subterm is true then we only run the
true branch, it if is false we only run the false branch, and if it is
decidable we run both branches and combine the results with join.

To motivate how we deal with integer information and condi-
tions, let us make our factorial example just a little more interesting
by restricting it to operate only on natural numbers:

fact(n : Nat) : Nat = if(n ≤ 1)1 else n ∗ fact(n− 1)

The body of the function is checked in a context like:

`1 = ints, `2 = 0, `3 = `1 ≥ `2;n = `3;T

The condition will verify with set:

{`7 = 1, `8 = `3 ≤ `7}.`8

When this set is uninhabited we know that `3 > 1 must hold. So
the false branch is checked in the context:

`1 = ints, `2 = 0, `3 = `1 ≥ `2, `9 = 1;n = `3; `3 > `9

In typing the recursive application, the domain term will generate a
set like:

{`10 = ints, `11 = 0, `12 = `10 ≥ `11}.`12

The argument will verify with set:

{`13 = 1, `14 = `3 − `13}.`14

The verifier will then check that this set is contained in the previous
set in the context above. That check results in checking the formula:

∀i3, i14 ∈ I :
i3 ≥ 0 ∧ i3 > 1 ∧ i14 = i3 − 1 =⇒
∃i12 ∈ I : i12 ≥ 0 ∧ i12 = i14



6.3 Set Containment
The set containment algorithm takes a context and two sets s1 and
s2 and decides if the values described by s1 are a subset of those
described by s2 in that context. This section informally describes a
declarative version of set containment, consisting of three phases:
splitting joins, structural matching, and integer formulas.

The first phase deals with joins in the context and s1. If we
want to know if a term like 3 | 4 is contained in a term like nats, set
containment will just generate a formula such as:

∀i1 ∈ I : i1 = 3 ∨ i1 = 4 =⇒ ∃i2 ∈ I : i2 ≥ 0 ∧ i2 = i1

which is true. Set containment only uses formulas for integers
though, so joins of non-integers require a different treatment. So
to check if tabs | ints is contained in anys, set containment needs,
in general, to consider each possibility in turn. The first phase,
join splitting, selects a sequence of joins in the context or s1

and considers as two separate subproblems, the join being the
left possibility and the join being the right possibility. Being a
declarative formulation, so long as some selection of a sequence of
joins leads to success, set containment holds; an actual algorithm
needs to find a way to select the right joins. Note that splitting
joins can lead to an exponential number of subproblems to consider
if joins are used indiscriminately or the actual algorithm is not
carefully structured.

The second phase is to match parts of s2 with s1 and the context
by structure. Consider if {`1 = 3, `2 = 4, `3 = (`1, `2)}.`3 is
contained in {`4 = ints, `5 = ints, `6 = (`4, `5)}.`6 (that is, is
(3, 4) a pair of integers). This will be true if any value we can bind
to `3 that satisfies its description could also be bound to `6 and
satisfy its description. Since `3 is a pair and `6 is also required to be
a pair, they are compatible. Furthermore, the first component of `3
is `1 and the first component of `6 is `4, so we need that any value
we can bind to `1 can be bound to `4. Since `1 has to be 3, and `4
is just required to be some integer, that checks out. Similarly for `2
and `5. When any value that can be bound to a label `1 is required
to also be bindable to label `2 we say that `2 is matched to `1. The
structural matching phase is about finding a matching, that is, a set
of such pairs, and verifying that the descriptions of the labels imply
the required condition.

Things are a little more subtle though. Consider if {`1 =
3, `2 = 4, `3 = (`1, `2)}.`3 is contained in {`4 = ints, `6 =
(`4, `4)}.`6 (is (3, 4) a pair of the same integer). Here, `6 is
matched to `3, `4 is matched to `1, and `4 is matched to `2. Every-
thing appears to be fine. However, `4 can only be bound to a single
value at a time, and so cannot be bound to both 3 and 4 at the same
time. To avoid this problem, set containment only matches a label
from s2 to at most one label of s1 or the context, but also seeks
an equating of the labels of s1 and the context. In this example,
`6 is matched to `3, `4 could be matched to `1 and `1 equated to
`2 (another possibility is to match `4 to `2 and equate `2 to `1).
The descriptions of labels that are equated must imply that the two
labels are always bound to the same value. Here, `1 is always 3 and
`2 is always 4, so this is not the case, and set containment fails.

The declarative version of the structural matching phase asks
if there exists a matching and an equating such that s2’s label is
matched to s1’s label and all the matched and equated labels’ de-
scriptions satisfy the required conditions for matching and equat-
ing respectively. If two labels that are clearly always integers are
matched or equated, they are simply noted for the third phase.

The third phase is to check the integer equalities noted in the
structuring matching phase by generating a formula and asking
a theorem prover if the formula is true. This process is mostly
straightforward with a few subtleties which we do not discuss
here. Essentially the descriptions of the matched/equated integer
labels and those transitively referenced by them are used to make

predicates which are combined into a forall/exists formula that
implies the matched/equated integer labels will always be bound
to the same integer. In general this formula has the form:

∀〈left integer variables〉 :
〈left description predicates〉 =⇒
∃〈right integer variables〉 :
〈right description predicate〉 ∧ 〈required equalities〉

where the left labels and their descriptions come from the context
and s1 and the right labels and their descriptions come from s2.
This is a first-order formula in the usual theory of integer arith-
metic. In general it is not in a decidable fragment of that theory
for two reasons. First, we do not necessarily generate linear formu-
las. Second, there are existentially quantified variables. It is easy
to eliminate many of these existentially quantified variables, such
that the ones that remain are essential to what was written in the
program. Modern SMT solvers are quite happy to try to prove for-
mulas of the above type, but might give false negatives. Our type
system is as powerful as the SMT solver used.

7. Discussion and Future Work
Overloading Contravariant functions, as well as having the con-
travariant domain subtyping one normally expects, also unify in in-
teresting ways. The term fn−(x = 3)3 includes all functions whose
domain includes 3 and that maps 3 to 3. Similarly for fn−(x = 5)5.
The term

(fn−(x = 3)3) == (fn−(x = 5)5)

is the intersection of these two sets of functions. That is, it contains
all functions whose domain includes 3 and 5, maps 3 to 3, and maps
5 to 5. That is, it is like an overloaded function doing what both
these functions do. We could allow such overloading as a first-class
feature, but that makes checking application and set containment
much more involved. Instead we only have a second-class feature
that allows more directed checking. We enforce that the domains of
each function in the overload are mutually disjoint, and therefore
can generate a discriminator that we can use at runtime to decide
which overload applies based on the actual argument. We reject
the overload if the discriminator requires function comparison. To
check application, we check that the actual argument is contained
in the union of the domains, and for each domain it might intersect
we run the range and include it in the result.

Recursion It is easy to add a form of value recursion to the
language. The runtime hardly changes, although it must account
for cycles in doing some of its checks. The verifier is slightly
more complicated. If recursion cannot occur in domain terms, then
mostly it is a matter of accounting for cycles in the head heaps.
The set containment rules were carefully designed to allow for that
possibility. Value recursion where recursive uses do not occur in
domain terms is probably easy to add to the set-theoretic semantics.
Unfortunately, it does not seem possible in general to make this
restriction.

To see this, note that types are just identity functions, and so
recursive types are encoded as functions that recurse through the
domain term. The runtime can handle these easily, but things are
more complicated for the set-theoretic semantics and the verifier.
We have some preliminary ideas about how to deal properly with
recursive types. We have not worked out all the details, but suspect
it requires the combination of some laziness (otherwise verifying
the recursive type itself gets into an infinite loop) and possible some
more cycle detection—checking containment of recursive types re-
quires checking containment of their domains, which could recurse
back to checking containment of the types. Adding recursive type
constructors of higher kind could also be considered, but it’s not
yet clear what this would involve.



The original goal of our language was to include a more general
form of recursion as in Haskell, but for a strict language. It is not
too hard to devise reasonable runtime semantics for such general
recursion (though there are choices to be made, especially in how
recursion, effects and failure interact). However, we spent many
years trying to figure out how to type check with general recursion
and it was only by restricting to value recursion that we gained
traction.

All quantifiers Joins express unions of values and lets provide
a quantified form of union which acts like an existential quanti-
fier. Similarly, unify expresses intersection of values, and not sur-
prisingly there is a quantified version of intersection, called an all
quantifier, which acts like a universal quantifier. When used with
contravariant functions, all quantifiers give a kind of parameterised
overloading—in other words, parametric polymorphism. For exam-
ple

type{all(t = types)fn−(x = arr[nats]i 7→ :t)arr[nats]i 7→ :t}
is the type of all functions that take an array and return an array of
the same type. The set-theoretic intuition for all quantifiers is quite
clear, but in most cases they are not realisable. For their use with
contravariant functions, there is a reasonable implementation and
things seem tractable in the verifier. The most interesting part of
verification is checking application of an all quantified function. It
is easy to run the all quantifier domain and the function domain to
form a set describing the domain, and then to check containment
of the actual argument in this set. To run the range of the function
we need to bind both the all quantifier parameter and the function
parameter. The latter is bound to the actual argument, the question
is what to do former. We use the matching inferred by the set
containment to narrow the all quantifier parameter to a potentially
smaller set than its domain and use that. This is like a form of
type argument inference. We are still working out the details, but it
looks very promising. One additional aspect is worth mentioning.
Unify breaks the parametricity property that many parametrically
polymorphic systems enjoy. To restore parametricity we need to
add a term similar to anys that means “a value that is not allowed
to be compared”; since we already have to check for function
comparison, this is just an extension of that checking. Using such
a term, we believe that we can build truly abstract types that enjoy
parametricity.

Type classes Functions that are parameterised over type classes
are sometimes thought of as functions that take an extra implicit
argument, and the type checker has to infer what that extra argu-
ment should be. Scala even makes approach explicit [20]. We plan
to take a similar approach to implement type classes.

Modules In many ways, modules are like records whose compo-
nents can be both types and values. The types of the value com-
ponents might refer to the type components, and so modules are
like dependently-typed records. In fact, most module systems in-
volve a form of limited dependent type system, usually carefully
constructed to be decidable. λℵ has all the pieces needed to express
modules: it has tuples (records are an easy extension), types as val-
ues, and dependent typing. To make an effective system, we will
need to extend the verifier to properly deal with abstract types and
type equalities, and to ensure that the appropriate equational prop-
erties can be decided by the verifier. We have not yet worked out
the details for this, but are optimistic that it can be made to work
out cleanly.
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