
Typed Compilation of Recursive Datatypes∗

Joseph C. Vanderwaart Derek Dreyer Leaf Petersen

Karl Crary Robert Harper Perry Cheng†

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Standard ML employs an opaque (or generative) semantics of
datatypes, in which every datatype declaration produces a new type
that is different from any other type, including other identically de-
fined datatypes. A natural way of accounting for this is to con-
sider datatypes to be abstract. When this interpretation is applied to
type-preserving compilation, however, it has the unfortunate con-
sequence that datatype constructors cannot be inlined, substantially
increasing the run-time cost of constructor invocation compared to
a traditional compiler. In this paper we examine two approaches
to eliminating function call overhead from datatype constructors.
First, we consider a transparent interpretation of datatypes that does
away with generativity, altering the semantics of SML; and sec-
ond, we propose an interpretation of datatype constructors as coer-
cions, which have no run-time effect or cost and faithfully imple-
ment SML semantics.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Abstract data types; D.3.4 [Programming Languages]:
Processors—Compilers; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Type structure

General Terms

Languages, Theory, Performance

Keywords

Typed compilation, Standard ML, recursive types, coercions

∗The ConCert Project is supported by the National Science
Foundation under grant number 0121633: ”ITR/SY+SI: Language
Technology for Trustless Software Dissemination”.

†IBM, TJ Watson, P.O. Box 704, Yorktown, NY 10598

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’03, January 18, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-649-8/03/0001 ...$5.00

1 Introduction

The programming language Standard ML (SML) [9] provides a
distinctive mechanism for defining recursive types, known as a
datatype declaration. For example, the following declaration de-
fines the type of lists of integers:

datatype intlist = Nil
| Cons of int * intlist

This datatype declaration introduces the type intlist and two
constructors: Nil represents the empty list, and Cons combines
an integer and a list to produce a new list. For instance, the expres-
sion Cons (1, Cons (2, Cons (3,Nil))) has type intlist
and corresponds to the list [1,2,3]. Values of this datatype are de-
constructed by a case analysis that examines a list and determines
whether it was constructed with Nil or with Cons, and in the latter
case, extracting the original integer and list.

An important aspect of SML datatypes is that they are generative.
That is, every datatype declaration defines a type that is distinct
from any other type, including those produced by other, possibly
identical, datatype declarations. The formal Definition of SML [9]
makes this precise by stating that a datatype declaration produces
a new type name, but does not associate that name with a defini-
tion; in this sense, datatypes are similar to abstract types. Harper
and Stone [7] (hereafter, HS) give a type-theoretic interpretation of
SML by exhibiting a translation from SML into a simpler, typed
internal language. This translation is faithful to the Definition of
SML in the sense that, with a few well-known exceptions, it trans-
lates an SML program into a well-typed IL program if and only
if the SML program is well-formed according to the Definition.
Consequently, we consider HS to be a suitable foundation for type-
directed compilation of SML. Furthermore, it seems likely that any
other suitable type-theoretic interpretation (i.e., one that is faithful
to the Definition) will encounter the same issues we explore in our
analysis.

Harper and Stone capture datatype generativity by translating a
datatype declaration as a module containing an abstract type and
functions to construct and deconstruct values of that type; thus in
the setting of the HS interpretation, datatypes are abstract types.
The generativity of datatypes poses some challenges for type-
directed compilation of SML. In particular, although the HS in-
terpretation is easy to understand and faithful to the Definition of
SML, it is inefficient when implemented naı̈vely. The problem
is that construction and deconstruction of datatype values require
calls to functions exported by the module defining the datatype;
this is unacceptable given the ubiquity of datatypes in SML code.
Conventional compilers, which disregard type information after an

initial type-checking phase, may dispense with this cost by inlining
those functions; that is, they may replace the function calls with
the actual code of the corresponding functions to eliminate the call
overhead. A type-directed compiler, however, does not have this
option since all optimizations, including inlining, must be type-
preserving. Moving the implementation of a datatype constructor
across the module boundary violates type abstraction and thus re-
sults in ill-typed intermediate code. This will be made more precise
in Section 2.

In this paper, we will discuss two potential ways of handling this
performance problem. We will present these alternatives in the con-
text of the TILT/ML compiler developed at CMU [11, 14]; they are
relevant, however, not just to TILT, but to understanding the defini-
tion of the language and type-preserving compilation in general.

The first approach is to do away with datatype generativity alto-
gether, replacing the abstract types in the HS interpretation with
concrete ones. We call this approach the transparent interpretation
of datatypes. Clearly, a compiler that does this is not an imple-
mentation of Standard ML, and we will show that, although the
modified language does admit inlining of datatype constructors, it
has some unexpected properties. In particular, it is not the case that
every well-formed SML program is allowed under the transparent
interpretation.

In contrast, the second approach, which we have adopted in the
most recent version of the TILT compiler, offers an efficient way of
implementing datatypes in a typed setting that is consistent with the
Definition. In particular, since a value of recursive type is typically
represented at run time in the same way as its unrolling, we can
observe that the mediating functions produced by the HS interpre-
tation all behave like the identity function at run time. We replace
these functions with special values that are distinguished from ordi-
nary functions by the introduction of “coercion types”. We call this
the coercion interpretation of datatypes, and argue that it allows a
compilation strategy that generates code with a run-time efficiency
comparable to what would be attained if datatype constructors were
inlined.

The paper is structured as follows: Section 2 gives the details of the
HS interpretation of datatypes (which we also refer to as the opaque
interpretation of datatypes) and illustrates the problems with inlin-
ing. Section 3 discusses the transparent interpretation. Section 4
gives the coercion interpretation and discusses its properties. Sec-
tion 5 gives a performance comparison of the three interpretations.
Section 6 discusses related work and Section 7 concludes.

2 The Opaque Interpretation of Datatypes

In this section, we review the parts of Harper and Stone’s interpreta-
tion of SML that are relevant to our discussion of datatypes. In par-
ticular, after defining the notation we use for our internal language,
we will give an example of the HS elaboration of datatypes. We
will refer to this example throughout the paper. We will also review
the way Harper and Stone define the matching of structures against
signatures, and discuss the implications this has for datatypes. This
will be important in Section 3, where we show some differences
between signature matching in SML and signature matching under
our transparent interpretation of datatypes.

Types σ,τ ::= · · · |α |δ
Recursive Types δ ::= µi(α1, . . .,αn).(τ1, . . .,τn)
Terms e ::= · · · | x |rollδ(e)

|unrollδ(e)
Typing Contexts Γ ::= ε |Γ,x : τ |Γ,α

Figure 1. Syntax of Iso-recursive Types

~X
def
= X1, . . .,Xn for some n ≥ 1,

where X is a metavariable,
such as α or τ

length(~X)
def
= n, where ~X = X1, . . .,Xn

µα.τ def
= µ1(α).(τ)

~µ(~α).(~τ) def
= µ1(~α).(~τ), . . .,µn(~α).(~τ),

where length(~α) = length(~τ) = n

expand(δ)
def
= τi[~µ(~α).(~τ)/~α], where δ = µi(~α).(~τ)

Figure 2. Shorthand Definitions

2.1 Notation

Harper and Stone give their interpretation of SML as a translation,
called elaboration, from SML into a typed internal language (IL).
We will not give a complete formal description of the internal lan-
guage we use in this paper; instead, we will use ML-like syntax for
examples and employ the standard notation for function, sum and
product types. For a complete discussion of elaboration, including
a thorough treatment of the internal language, we refer the reader
to Harper and Stone [7]. Since we are focusing our attention on
datatypes, recursive types will be of particular importance. We will
therefore give a precise description of the semantics of the form of
recursive types we use.

The syntax for recursive types is given in Figure 1. Recursive types
are separated into their own syntactic subcategory, ranged over by δ.
This is mostly a matter of notational convenience, as there are many
times when we wish to make it clear that a particular type is a recur-
sive one. A recursive type has the form µi(α1, . . .,αn).(τ1, . . .,τn),
where 1 ≤ i ≤ n and each α j is a type variable that may appear free
in any or all of τ1, . . .,τn. Intuitively, this type is the ith in a sys-
tem of n mutually recursive types. As such, it is isomorphic to τi
with each α j replaced by the jth component of the recursive bun-
dle. Formally, it is isomorphic to the following somewhat unwieldy
type:

τi[µ1(α1, . . .,αn).(τ1, . . .,τn),

. . .,µn(α1, . . .,αn).(τ1, . . .,τn)/α1, . . .,αn]

(where, as usual, we denote by τ[σ1, . . .,σn/α1, . . .,αn] the simul-
taneous capture-avoiding substitution of σ1, . . .,σn for α1, . . .,αn in
τ). Since we will be writing such types often, we use some nota-
tional conventions to make things clearer; these are shown in Fig-
ure 2. Using these shorthands, the above type may be written as
expand(µi(~α).(~τ)).

The judgment forms of the static semantics of our internal language
are given in Figure 3, and the rules relevant to recursive types are
given in Figure 4. Note that the only rule that can be used to judge
two recursive types equal requires that the two types in question are
the same (ith) projection from bundles of the same length whose
respective components are all equal. In particular, there is no “un-

Γ ` ok Well-formed context.
Γ ` τ type Well-formed type.
Γ ` σ ≡ τ Equivalence of types.
Γ ` e : τ Well-formed term.

Figure 3. Relevant Typing Judgments

i ∈ 1..n ∀ j ∈ 1..n. Γ,α1, . . .,αn ` τ j type

Γ ` µi(α1, . . .,αn).(τ1, . . .,τn) type

i ∈ 1..n ∀ j ∈ 1..n. Γ,α1, . . .,αn ` σ j ≡ τ j

Γ ` µi(α1, . . .,αn).(σ1, . . .,σn) ≡ µi(α1, . . .,αn).(τ1, . . .,τn)

Γ ` e : expand(δ)

Γ ` rollδ(e) : δ
Γ ` e : δ

Γ ` unrollδ(e) : expand(δ)

Figure 4. Typing Rules for Iso-recursive Types

rolling” rule stating that δ ≡ expand(δ); type theories in which this
equality holds are said to have equi-recursive types and are signifi-
cantly more complex [5]. The recursive types in our theory are iso-
recursive types that are isomorphic, but not equal, to their expan-
sions. The isomorphism is embodied by the roll and unroll oper-
ations at the term level; the former turns a value of type expand(δ)
into one of type δ, and the latter is its inverse.

2.2 Elaborating Datatype Declarations

The HS interpretation of SML includes a full account of datatypes,
including generativity. The main idea is to encode datatypes as re-
cursive sum types but hide this implementation behind an opaque
signature. A datatype declaration therefore elaborates to a structure
that exports a number of abstract types and functions that construct
and deconstruct values of those types. For example, consider the
following pair of mutually recursive datatypes, representing expres-
sions and declarations in the abstract syntax of a toy language:

datatype exp = VarExp of var
| LetExp of dec * exp

and dec = ValDec of var * exp
| SeqDec of dec * dec

The HS elaboration of this declaration is given in Figure 5, using
ML-like syntax for readability. To construct a value of one of these
datatypes, a program must use the corresponding in function; these
functions each take an element of the sum type that is the “un-
rolling” of the datatype and produce a value of the datatype. More
concretely, we implement the constructors for exp and dec as fol-
lows:

VarExp(x)
def
= ExpDec.exp in(inj1(x))

LetExp(d,e)
def
= ExpDec.exp in(inj2(d,e))

ValDec(x,e)
def
= ExpDec.dec in(inj1(x,e))

SeqDec(d1,d2)
def
= ExpDec.dec in(inj2(d1,d2))

Notice that the types exp and dec are held abstract by the opaque
signature ascription. This captures the generativity of datatypes,
since the abstraction prevents ExpDec.exp and ExpDec.dec from
being judged equal to any other types. However, as we mentioned
in Section 1, this abstraction also prevents inlining of the in and

structure ExpDec :> sig
type exp
type dec
val exp in : var + (dec * exp) -> exp
val exp out : exp -> var + (dec * exp)
val dec in : (var * exp) +

(dec * dec) -> dec
val dec out : dec -> (var * exp) +

(dec * dec)
end = struct

type exp = µ1(α,β).(var + β * α, var * α + β * β)
type dec = µ2(α,β).(var + β * α, var * α + β * β)
fun exp in x = rollexp(x)
fun exp out x = unrollexp(x)
fun dec in x = rolldec(x)
fun dec out x = unrolldec(x)

end

Figure 5. Harper-Stone Elaboration of exp-dec Example

out functions: for example, if we attempt to inline exp in in the
definition of VarExp above, we get

VarExp(x)
def
= rollExpDec.exp(inj1(x))

but this is ill-typed outside of the ExpDec module because the fact
that exp is a recursive type is not visible. Thus performing inlining
on well-typed code can lead to ill-typed code, so we say that inlin-
ing across abstraction boundaries is not type-preserving and there-
fore not an acceptable strategy for a typed compiler. The problem
is that since we cannot inline in and out functions, our compiler
must pay the run-time cost of a function call every time a value
of a datatype is constructed or case-analyzed. Since these opera-
tions occur very frequently in SML code, this performance penalty
is significant.

One strategy that can alleviate this somewhat is to hold the imple-
mentation of a datatype abstract during elaboration, but to expose
its underlying implementation after elaboration to other code de-
fined in the same compilation unit. Calls to the constructors of
a locally-defined datatype can then be safely inlined. In the set-
ting of whole-program compilation, this approach can potentially
eliminate constructor call overhead for all datatypes except those
appearing as arguments to functors. However, in the context of sep-
arate compilation, the clients of a datatype generally do not have
access to its implementation, but rather only to the specifications
of its constructors. As we shall see in Section 3, the specifications
of a datatype’s constructors do not provide sufficient information to
correctly predict how the datatype is actually implemented, so the
above compilation strategy will have only limited success in a true
separate compilation setting.

2.3 Datatypes and Signature Matching

Standard ML makes an important distinction between datatype dec-
larations, which appear at the top level or in structures, and datatype
specifications, which appear in signatures. As we have seen, the HS
interpretation elaborates datatype declarations as opaquely sealed
structures; datatype specifications are translated into specifications
of structures. For example, the signature

signature S = sig
datatype intlist = Nil

| Cons of int * intlist
end

contains a datatype specification, and elaborates as follows:

signature S = sig
struct Intlist : sig

type intlist
val intlist in :

unit + int * intlist -> intlist
val intlist out :

intlist -> unit + int * intlist
end

end

A structure M will match S if M contains a structure Intlist of
the appropriate signature.1 In particular, it is clear that the struc-
ture definition produced by the HS interpretation for the datatype
intlist defined in Section 1 has this signature, so that datatype
declaration matches the specification above.

What is necessary in general for a datatype declaration to match a
specification under this interpretation? Since datatype declarations
are translated as opaquely sealed structures, and datatype specifica-
tions are translated as structure specifications, matching a datatype
declaration against a spec boils down to matching one signature—
the one opaquely sealing the declaration structure—against another
signature.

Suppose we wish to know whether the signature S matches the sig-
nature T; that is, whether a structure with signature S may also be
given the signature T. Intuitively, we must make sure that for ev-
ery specification in T there is a specification in S that is compatible
with it. For instance, if T contains a value specification of the form
val x : τ, then S must also contain a specification val x : τ′,
where τ′ ≡ τ. For an abstract type specification of the form type t
occurring in T, we must check that a specification of t also appears
in S; furthermore, if the specification in S is a transparent one, say
type t = τimp, then when checking the remainder of the specifi-
cations in T we may assume in both signatures that t= τimp. Trans-
parent type specifications in T are similar, but there is the added
requirement that if the specification in T is type t = τspec and the
specification in S is type t = τimp, then τspec and τimp must be
equivalent.

Returning to the specific question of datatype matching, a specifi-
cation of the form

datatype t1 = τ1 and . . . and tn = τn

(where the τi may be sum types) elaborates to a specification of a
structure with the following signature:

sig
type t1
...
type tn
val t1 in : τ1 -> t1
val t1 out : t1 -> τ1
...
val tn in : τn -> tn
val tn out : tn -> τn

end

1Standard ML allows only datatypes to match datatype spec-
ifications, so the actual HS elaboration must use a name for the
datatype that cannot be guessed by a programmer.

structure ExpDec :> sig
type exp = µ1(α,β).(var + β * α, var * α + β * β)
type dec = µ2(α,β).(var + β * α, var * α + β * β)
(* ... specifications for in and out functions

same as before ... *)
end =

(* ... same structure as before ... *)

Figure 6. The Transparent Elaboration of Exp and Dec

In order to match this signature, the structure corresponding to a
datatype declaration must define types named t1, . . .,tn and must
contain in and out functions of the appropriate type for each.
(Note that in any structure produced by elaborating a datatype dec-
laration under this interpretation, the ti’s will be abstract types.)
Thus, for example, if m ≥ n then the datatype declaration

datatype t1 = σ1 and . . . and tm = σm

matches the above specification if and only if σi ≡ τi for 1 ≤ i ≤ n,
since this is necessary and sufficient for the types of the in and out
functions to match for the types mentioned in the specification.

3 A Transparent Interpretation of Datatypes

A natural approach to enabling the inlining of datatypes in a type-
preserving compiler is to do away with the generative semantics of
datatypes. In the context of the HS interpretation, this corresponds
to replacing the abstract type specification in the signature of a
datatype module with a transparent type definition, so we call this
modified interpretation the transparent interpretation of datatypes
(TID).

3.1 Making Datatypes Transparent

The idea of the transparent interpretation is to expose the imple-
mentation of datatypes as recursive sum types during elaboration,
rather than hiding it. In our expdec example, this corresponds to
changing the declaration shown in Figure 5 to that shown in Fig-
ure 6 (we continue to use ML-like syntax for readability).

Importantly, this change must extend to datatype specifications as
well as datatype declarations. Thus, a structure that exports a
datatype must export its implementation transparently, using a sig-
nature similar to the one in the figure—otherwise a datatype inside
a structure would appear to be generative outside that structure, and
there would be little point to the new interpretation.

As we have mentioned before, altering the interpretation of
datatypes to expose their implementation as recursive types really
creates a new language, which is neither a subset nor a superset
of Standard ML. An example of the most obvious difference can
be seen in Figure 7. In the figure, two datatypes are defined by
seemingly identical declarations. In SML, because datatypes are
generative, the two types List1.t and List2.t are distinct; since
the variable l has type List1.t but is passed to List2.Cons,
which expects List2.t, the function switch is ill-typed. Under
the transparent interpretation, however, the implementations of both
datatypes are exported transparently as µα.unit+ int * α. Thus
under this interpretation, List1.t and List2.t are equal and so
switch is a well-typed function.

It is clear that many programs like this one fail to type-check in
SML but succeed under the transparent interpretation; what is less

structure List1 = struct
datatype t = Nil | Cons of int * t

end

structure List2 = struct
datatype t = Nil | Cons of int * t

end

fun switch List1.Nil = List2.Nil
| switch (List1.Cons (n,l)) =
List2.Cons (n,l)

Figure 7. Non-generativity of Transparent Datatypes

obvious is that there are some programs for which the opposite is
true. We will discuss two main reasons for this.

3.2 Problematic Datatype Matchings

Recall that according to the HS interpretation, a datatype matches
a datatype specification if the types of the datatype’s in and out
functions match the types of the in and out functions in the speci-
fication. (Note: the types of the out functions match if and only if
the types of the in functions match, so we will hereafter refer only
to the in functions.) Under the transparent interpretation, how-
ever, it is also necessary that the recursive type implementing the
datatype match the one given in the specification. This is not a triv-
ial requirement; we will now give two examples of matchings that
succeed in SML but fail under the transparent interpretation.

3.2.1 A Simple Example

A very simple example of a problematic matching is the following.
Under the opaque interpretation, matching the structure

struct
datatype u = A of u * u | B of int
type v = u * u

end

against the signature

sig
type v
datatype u = A of v | B of int

end

amounts to checking that the type of the in function for u defined
in the structure matches that expected by the signature once u *
u has been substituted for v in the signature. (No definition is
substituted for u, since it is abstract in the structure.) After sub-
stitution, the type required by the signature for the in function
is u * u + int -> u, which is exactly the type of the function
given by the structure, so the matching succeeds.

Under the transparent interpretation, however, the structure defines

u to be uimp
def
= µα.α * α + int but the signature specifies u as

µα.v + int. In order for matching to succeed, these two types must
be equivalent after we have substituted uimp * uimp for v in the spec-
ification. That is, it is required that

uimp ≡ µα.uimp * uimp + int

Observe that the type on the right is none other than
µα.expand(uimp). (Notice also that the bound variable α does not

appear free in the body of this µ-type. Hereafter we will write such
types with a wildcard in place of the type variable to indicate that
it is not used in the body of the µ.) This equivalence does not hold
for iso-recursive types, so the matching fails.

3.2.2 A More Complex Example

Another example of a datatype matching that is legal in SML but
fails under the transparent interpretation can be found by recon-
sidering our running example of exp and dec. Under the opaque
interpretation, a structure containing this pair of datatypes matches
the following signature, which hides the fact that exp is a datatype:

sig
type exp
datatype dec = ValDec of var * exp

| SeqDec of dec * dec
end

When this datatype specification is elaborated under the transparent
interpretation, however, the resulting IL signature looks like:

sig
type exp
type dec = decspec

...
end

where decspec
def
= µα.var * exp + α * α. Elaboration of the decla-

rations of exp and dec, on the other hand, produces the structure in
Figure 6, which has the signature:

sig
type exp = expimp
type dec = decimp
...

end

where we define

expimp
def
= µ1(α,β).(var + β * α, var * α + β * β)

decimp
def
= µ2(α,β).(var + β * α, var * α + β * β)

Matching the structure containing the datatypes against the signa-
ture can only succeed if decspec ≡ decimp (under the assumption
that exp ≡ expimp). This equivalence does not hold because the
two µ-types have different numbers of components.

3.3 Problematic Signature Constraints

The module system of SML provides two ways to express shar-
ing of type information between structures. The first, where type,
modifies a signature by “patching in” a definition for a type the
signature originally held abstract. The second, sharing type, as-
serts that two or more type names (possibly in different structures)
refer to the same type. Both of these forms of constraints are re-
stricted so that multiple inconsistent definitions are not given to a
single type name. In the case of sharing type, for example, it
is required that all the names be flexible, that is, they must either
be abstract or defined as equal to another type that is abstract. Un-
der the opaque interpretation, datatypes are abstract and therefore
flexible, meaning they can be shared; under the transparent inter-
pretation, datatypes are concretely defined and hence can never be
shared. For example, the following signature is legal in SML:

signature S = sig
structure M : sig

type s
datatype t = A | B of s

end
structure N : sig

type s
datatype t = A | B of s

end
sharing type M.t = N.t

end

We can write an equivalent signature by replacing the
sharing type line with where type t = M.t, which is
also valid SML. Neither of these signatures elaborates successfully
under the transparent interpretation of datatypes, since under that
interpretation the datatypes are transparent and therefore ineligible
for either sharing or where type.

Another example is the following signature:

signature AB = sig
structure A : sig

type s
val C : s

end
structure B : sig

datatype t = C | D of A.s * t
end
sharing type A.s = B.t

end

(Again, we can construct an analogous example with where type.)
Since the name B.t is flexible under the opaque interpretation but
not the transparent, this code is legal SML but must be rejected
under the transparent interpretation.

3.4 Relaxing Recursive Type Equivalence

We will now describe a way of weakening type equivalence (i.e.,
making it equate more types) so that the problematic datatype
matchings described in Section 3.2 succeed under the transparent
interpretation. (This will not help with the problematic sharing con-
straints of Section 3.3.) The ideas in this section are based upon
the equivalence algorithm adopted by Shao [8] for the FLINT/ML
compiler.

To begin, consider the simple u-v example of Section 3.2.1. Recall
that in that example, matching the datatype declaration against the
spec required proving the equivalence

uimp ≡ µα.uimp * uimp + int

where the type on the right-hand side is just µ .expand(uimp). By
simple variations on this example, it is easy to show that in general,
for the transparent interpretation to be as permissive as the opaque,
the following recursive type equivalence must hold:

δ ≡ µ .expand(δ)

We refer to this as the boxed-unroll rule. It says that a recursive type
is equal to its unrolling “boxed” by a µ. An alternative formulation,
equivalent to the first one by transitivity, makes two recursive types
equal if their unrollings are equal, i.e.:

expand(δ1) ≡ expand(δ2)

δ1 ≡ δ2

Intuitively, this rule is needed because datatype matching succeeds
under the opaque interpretation whenever the unrolled form of the
datatype implementation equals the unrolled form of the datatype
spec (because these are both supposed to describe the domain of
the in function).

Although the boxed-unroll equivalence is necessary for the trans-
parent interpretation of datatypes to admit all matchings admitted
by the opaque one, it is not sufficient; to see this, consider the prob-
lematic exp-dec matching from Section 3.2.2. The problematic
constraint in that example is:

dec′spec ≡ decimp

where dec′spec = decspec[expimp/exp] (substituting expimp for exp
in decimp has no effect, since the variable does not appear free).
Expanding the definitions of these types, we get the constraint:

µα.var * expimp + α * α ≡

µ2(α,β).(var + β * α, var * α + β * β)

The boxed-unroll rule is insufficient to prove this equivalence. In
order to apply boxed-unroll to prove these two types equivalent, we
must be able to prove that their unrollings are equivalent, in other
words that

var * expimp + dec
′
spec * dec

′
spec ≡

var * expimp + decimp * decimp

But we cannot prove this without first proving dec′spec ≡ decimp,
which is exactly what we set out to prove in the first place! The
boxed-unroll rule is therefore unhelpful in this case.

The trouble is that proving the premise of the boxed-unroll rule (the
equivalence of expand(δ1) and expand(δ2)) may require proving
the conclusion (the equivalence of δ1 and δ2). Similar problems
have been addressed in the context of general equi-recursive types.
In that setting, deciding type equivalence involves assuming the
conclusions of equivalence rules when proving their premises [1, 2].
Applying this idea provides a natural solution to the problem dis-
cussed in the previous section. We can maintain a “trail” of type-
equivalence assumptions; when deciding the equivalence of two re-
cursive types, we add that equivalence to the trail before comparing
their unrollings.

Formally, the equivalence judgement itself becomes Γ;A ` σ ≡ τ,
where A is a set of assumptions, each of the form τ1 ≡ τ2. All
the equivalence rules in the static semantics must be modified to
account for the trail. In all the rules except those for recursive types,
the trail is simply passed unchanged from the conclusions to the
premises. There are two new rules that handle recursive types:

τ1 ≡ τ2 ∈ A
Γ;A ` τ1 ≡ τ2

Γ;A∪{δ1 ≡ δ2} ` expand(δ1) ≡ expand(δ2)

Γ;A ` δ1 ≡ δ2

The first rule allows an assumption from the trail to be used; the sec-
ond rule is an enhanced form of the boxed-unroll rule that adds the
conclusion to the assumptions of the premise. It is clear that the trail
is just what is necessary in order to resolve the exp-dec anomaly
described above; before comparing the unrollings of decspec and
decimp, we add the assumption decspec ≡ decimp to the trail; we
then use this assumption to avoid the cyclic dependency we en-
countered before.

In fact, the trailing version of the boxed-unroll rule is sufficient
to ensure that the transparent interpretation accepts all datatype
matchings accepted by SML. To see why, consider a datatype spec-
ification

datatype t1 = τ1 and ... and tn = τn

(where the τi may be sum types in which the ti may occur).
Suppose that some implementation matches this spec under the
opaque interpretation; the implementation of each type ti must be
a recursive type δi. Furthermore, the type of the ti in function
given in the spec is τi → ti, and the type of its implementation is
expand(δi)→ δi. Because the matching succeeds under the opaque
interpretation, we know that these types are equal after each δi has
been substituted for ti; thus we know that expand(δi)≡ τi[~δ/~t] for
each i.

When the specification is elaborated under the transparent interpre-
tation, however, the resulting signature declares that the implemen-
tation of each ti is the appropriate projection from a recursive bun-
dle determined by the spec itself. That is, each ti is transparently
specified as µi(~t).(~τ). In order for the implementation to match this
transparent specification, it is thus sufficient to prove the following
theorem:

Theorem 1 If ∀i ∈ 1..n, Γ; /0 ` expand(δi) ≡ τi[~δ/~t], then ∀i ∈
1..n, Γ; /0 ` δi ≡ µi(~t).(~τ).

Proof: See Appendix A. 2

3.5 Discussion

While we have given a formal argument why the trailing version
of the boxed-unroll rule is flexible enough to allow the datatype
matchings of SML to typecheck under the transparent interpreta-
tion, we have not been precise about how maintaining a trail re-
lates to the rest of type equivalence. In fact, the only work re-
garding trails we are aware of is the seminal work of Amadio and
Cardelli [1] on subtyping equi-recursive types, and its later coin-
ductive axiomatization by Brandt and Henglein [2], both of which
are conducted in the context of the simply-typed λ-calculus. Our
trailing boxed-unroll rule can be viewed as a restriction of the cor-
responding rule in Amadio and Cardelli’s trailing algorithm so that
it is only applicable when both types being compared are recursive
types.

It is not clear, though, how trails affect more complex type sys-
tems that contain type constructors of higher kind, such as Gi-
rard’s Fω [6]. In addition to higher kinds, the MIL (Middle In-
termediate Language) of TILT employs singleton kinds to model
SML’s type sharing [13], and the proof that MIL typechecking is
decidable is rather delicate and involved. While we have imple-
mented the above trailing algorithm in TILT for experimental pur-
poses (see Section 5), the interaction of trails and singletons is not
well-understood.

As for the remaining conflict between the transparent interpretation
and type sharing, one might argue that the solution is to broaden
SML’s semantics for sharing constraints to permit sharing of rigid
(non-abstract) type components. The problem is that the kind of
sharing that would be necessary to make the examples of Sec-
tion 3.3 typecheck under the transparent interpretation would re-
quire some form of type unification. It is difficult to determine
where to draw the line between SML’s sharing semantics and full
higher-order unification, which is undecidable. Moreover, unifica-

tion would constitute a significant change to SML’s semantics, dis-
proportionate to the original problem of efficiently implementing
datatypes.

4 A Coercion Interpretation of Datatypes

In this section, we will discuss a treatment of datatypes based on
coercions. This solution will closely resemble the Harper-Stone
interpretation, and thus will not require the boxed-unroll rule or a
trail algorithm, but will not incur the run-time cost of a function call
at constructor application sites either.

4.1 Representation of Datatype Values

The calculus we have discussed in this paper can be given the usual
structured operational semantics, in which an expression of the
form rollδ(v) is itself a value if v is a value. (From here on we
will assume that the metavariable v ranges only over values.) In
fact, it can be shown without difficulty that any closed value of a
datatype δ must have the form rollδ(v) where v is a closed value
of type expand(δ). Thus the roll operator plays a similar role
to that of the inj1 operator for sum types, as far as the high-level
language semantics is concerned.

Although we specify the behavior of programs in our language with
a formal operational semantics, it is our intent that programs be
compiled into machine code for execution, which forces us to take
a slightly different view of data. Rather than working directly with
high-level language values, compiled programs manipulate repre-
sentations of those values. A compiler is free to choose the repre-
sentation scheme it uses, provided that the basic operations of the
language can be faithfully performed on representations. For exam-
ple, most compilers construct the value inj1(v) by attaching a tag
to the value v and storing this new object somewhere. This tagging
is necessary in order to implement the case construct. In particular,
the representation of any value of type τ1 + τ2 must carry enough
information to determine whether it was created with inj1 or inj2
and recover a representation of the injected value.

What are the requirements for representations of values of recursive
type? It turns out that they are somewhat weaker than for sums.
The elimination form for recursive types is unroll, which (unlike
case) does not need to extract any information from its argument
other than the original rolled value. In fact, the only requirement is
that a representation of v can be extracted from any representation
of rollδ(v). Thus one reasonable representation strategy is to rep-
resent rollδ(v) exactly the same as v. In the companion technical
report [15], we give a more precise argument as to why this is rea-
sonable, making use of two key insights. First, it is an invariant of
the TILT compiler that the representation of any value fits in a sin-
gle machine register; anything larger than 32 bits is always stored
in the heap. This means that all possible complications having to do
with the sizes of recursive values are avoided. Second, we define
representations for values, not types; that is, we define the set of
machine words that can represent the value v by structural induc-
tion on v, rather than defining the set of words that can represent
values of type τ by induction on τ as might be expected.

The TILT compiler adopts this strategy of identifying the represen-
tations of rollδ(v) and v, which has the pleasant consequence that
the roll and unroll operations are “no-ops”. For instance, the
untyped machine code generated by the compiler for the expres-
sion rollδ(e) need not differ from the code for e alone, since if
the latter evaluates to v then the former evaluates to rollδ(v), and

Types σ,τ ::= · · · | (~α;τ1) ⇒ τ2

Terms e ::= · · · |Λ~α.foldδ |Λ~α.unfoldδ
| v@(~τ;e)

Figure 8. Syntax of Coercions

the representations of these two values are the same. The reverse
happens for unroll.

This, in turn, has an important consequence for datatypes. Since the
in and out functions produced by the HS elaboration of datatypes
do nothing but roll or unroll their arguments, the code generated
for any in or out function will be the same as that of the identity
function. Hence, the only run-time cost incurred by using an in
function to construct a datatype value is the overhead of the function
call itself. In the remainder of this section we will explain how to
eliminate this cost by allowing the types of the in and out functions
to reflect the fact that their implementations are trivial.

4.2 The Coercion Interpretation

To mark in and out functions as run-time no-ops, we use coer-
cions, which are similar to functions, except that they are known
to be no-ops and therefore no code needs to be generated for co-
ercion applications. We incorporate coercions into the term level
of our language and introduce special coercion types to which they
belong. Figure 8 gives the changes to the syntax of our calculus.
Note that while we have so far confined our discussion to monomor-
phic datatypes, the general case of polymorphic datatypes will re-
quire polymorphic coercions. The syntax we give here is essentially
that used in the TILT compiler; it does not address non-uniform
datatypes.

We extend the type level of the language with a type for (possibly
polymorphic) coercions, (~α;τ1) ⇒ τ2; a value of this type is a co-
ercion that takes length(~α) type arguments and then can change a
value of type τ1 into one of type τ2 (where, of course, variables
from ~α can appear in either of these types). When ~α is empty, we
will write (~α;τ1) ⇒ τ2 as τ1 ⇒ τ2.

Similarly, we extend the term level with the (possibly polymorphic)
coercion values Λ~α.foldδ and Λ~α.unfoldδ; these take the place
of roll and unroll expressions. Coercions are applied to (type
and value) arguments in an expression of the form v@(~τ;e); here
v is the coercion, ~τ are the type arguments, and e is the value to
be coerced. Note that the coercion is syntactically restricted to be
a value; this makes the calculus more amenable to a simple code
generation strategy, as we will discuss in Section 4.3. The typing
rules for coercions are essentially the same as if they were ordinary
polymorphic functions, and are shown in Figure 9.

With these modifications to the language in place, we can elaborate
the datatypes exp and dec using coercions instead of functions to
implement the in and out operations. The result of elaborating
this pair of datatypes is shown in Figure 10. Note that the interface
is exactly the same as the HS interface shown in Section 2 except
that the function arrows (->) have been replaced by coercion arrows
(⇒). This interface is implemented by defining exp and dec in the
same way as in the HS interpretation, and implementing the in and
out coercions as the appropriate fold and unfold values. The
elaboration of a constructor application is superficially similar to
the opaque interpretation, but a coercion application is generated
instead of a function call. For instance, LetExp(d,e) elaborates as
exp in@(inj2(d,e)).

4.3 Coercion Erasure

We are now ready to formally justify our claim that coercions may
be implemented by erasure, that is, that it is sound for a compiler
to consider coercions only as “retyping operators” and ignore them
when generating code. First, we will describe the operational se-
mantics of the coercion constructs we have added to our internal
language. Next, we will give a translation from our calculus into an
untyped one in which coercion applications disappear. Finally, we
will state a theorem guaranteeing that the translation is safe.

The operational semantics of our coercion constructs are shown in
Figure 11. We extend the class of values with the fold and unfold
coercions, as well as the application of a fold coercion to a value.
These are the canonical forms of coercion types and recursive types
respectively. The two inference rules shown in Figure 11 define
the manner in which coercion applications are evaluated. The eval-
uation of a coercion application is similar to the evaluation of a
normal function application where the applicand is already a value.
The rule on the left specifies that the argument is reduced until it is
a value. If the applicand is a fold, then the application itself is a
value. If the applicand is an unfold, then the argument must have a
recursive type and therefore (by canonical forms) consist of a fold
applied to a value v. The rule on the right defines unfold to be the
left inverse of fold, and hence this evaluates to v.

As we have already discussed, the data representation strategy of
TILT is such that no code needs to be generated to compute foldv
from v, nor to compute the result of cancelling a fold with an
unfold. Thus it seems intuitive that to generate code for a coercion
application v@(~τ;e), the compiler can simply generate code for e,
with the result that datatype constructors and destructors under the
coercion interpretation have the same run-time costs as Harper and
Stone’s functions would if they were inlined. To make this more
precise, we now define an erasure mapping to translate terms of
our typed internal language into an untyped language with no coer-
cion application. The untyped nature of the target language (and of
machine language) is important: treating v as foldv would destroy
the subject reduction property of a typed language.

Figure 12 gives the syntax of our untyped target language and the
coercion-erasing translation. The target language is intended to be
essentially the same as our typed internal language, except that all
types and coercion applications have been removed. It contains
untyped coercion values fold and unfold, but no coercion appli-
cation form. The erasure translation turns expressions with type an-
notations into expressions without them (λ-abstraction and coercion
values are shown in the figure), and removes coercion applications
so that the erasure of v@(~τ;e) is just the erasure of e. In particular,
for any value v, v and foldv are identified by the translation, which
is consistent with our intuition about the compiler. The operational
semantics of the target language is analogous to that of the source.

The language with coercions has the important type-safety property
that if a term is well-typed, its evaluation does not get stuck. An
important theorem is that the coercion-erasing translation preserves
the safety of well-typed programs:

Theorem 2 (Erasure Preserves Safety) If Γ ` e : τ, then e− is
safe. That is, if e− 7→∗ f , then f is not stuck.

Proof: See the companion technical report [15]. 2

Γ,~α ` τ1 type Γ,~α ` τ2 type

Γ ` (~α;τ1) ⇒ τ2 type

Γ,~α ` δ type

Γ ` Λ~α.foldδ : (~α;expand(δ)) ⇒ δ
Γ,~α ` δ type

Γ ` Λ~α.unfoldδ : (~α;δ) ⇒ expand(δ)

Γ ` v : (~α;τ1) ⇒ τ2 Γ ` e : τ1[~σ/~α] ∀i ∈ 1..n. Γ ` σi type

Γ ` v@(~σ;e) : τ2[~σ/~α]

Figure 9. Typing Rules for Coercions

structure ExpDec :> sig
type exp
type dec
val exp in : var + (dec * exp) ⇒ exp
val exp out : exp ⇒ var + (dec * exp)
val dec in : (var * exp) + (dec * dec) ⇒ dec
val dec out : dec ⇒ (var * exp) + (dec * dec)

end = struct
type exp = µ1(α,β).(var + β * α, var * α + β * β)
type dec = µ2(α,β).(var + β * α, var * α + β * β)
val exp in = foldexp
val exp out = unfoldexp
val dec in = folddec
val dec out = unfolddec

end

Figure 10. Elaboration of exp and dec Under the Coercion Interpretation

Values v ::= · · · |Λ~α.foldτ |Λ~α.unfoldτ | (Λ~α.foldτ)@(~σ;v)

e 7→ e′

v@(~τ;e) 7→ v@(~τ;e′) (Λ~α.unfoldτ1)@(~σ;((Λ~β.foldτ2)@(~σ′;v))) 7→ v

Figure 11. Operational Semantics for Coercions

M ::= · · · |λx.M |fold |unfold

x−= x
(λx:τ.e)−= λx.e−

(Λ~α.foldδ)
−= fold

(Λ~α.unfoldδ)
−= unfold

(v@(~τ;e))−= e−

...

Figure 12. Target Language Syntax; Type and Coercion Erasure

Test HS CID TID
life 8.233 2.161 2.380
leroy 5.497 4.069 3.986
fft 22.167 17.619 16.509
boyer 2.031 1.559 1.364
simple 1.506 1.003 0.908
tyan 16.239 8.477 9.512
msort 1.685 0.860 1.012
pia 1.758 1.494 1.417
lexgen 11.052 5.599 5.239
frank 37.449 25.355 26.017
TOTAL 107.617 68.199 68.344

Figure 13. Performance Comparison

Note that the value restriction on coercions is crucial to the sound-
ness of this “coercion erasure” interpretation. Since a divergent ex-
pression can be given an arbitrary type, including a coercion type,
any semantics in which a coercion expression is not evaluated be-
fore it is applied fails to be type-safe. Thus if arbitrary expressions
of coercion type could appear in application positions, the compiler
would have to generate code for them. Since values cannot diverge
or have effects, we are free to ignore coercion applications when
we generate code.

5 Performance

To evaluate the relative performance of the different interpretations
of datatypes we have discussed, we performed experiments using
three different versions of the TILT compiler: one that implements
a naı̈ve Harper-Stone interpretation in which the construction of a
non-locally-defined datatype requires a function call2; one that im-
plements the coercion interpretation of datatypes; and one that im-
plements the transparent interpretation. We compiled ten different
benchmarks using each version of the compiler; the running times
for the resulting executables (averaged over three trials) are shown
in Figure 13. All tests were run on an Ultra-SPARC Enterprise
server; the times reported are CPU time in seconds.

The measurements clearly indicate that the overhead due to
datatype constructor function calls under the naı̈ve HS interpreta-
tion is significant. The optimizations afforded by the coercion and
transparent interpretations provide comparable speedups over the
opaque interpretation, both on the order of 37% (comparing the to-
tal running times). Given that, of the two optimized approaches,
only the coercion interpretation is entirely faithful to the semantics
of SML, and since the theory of coercion types is a simpler and
more orthogonal extension to the HS type theory than the trailing
algorithm of Section 3.4, we believe the coercion interpretation is
the more robust choice.

6 Related Work

Our trail algorithm for weakened recursive type equivalence is
based on the one implemented by Shao in the FLINT intermedi-
ate language of the Standard ML of New Jersey compiler [12]. The
typing rules in Section 3.4 are based on the formal semantics for
FLINT given by League and Shao [8], although we are the first to
give a formal argument that their trailing algorithm actually works.
It is important to note that SML/NJ only implements the transpar-

2In particular, we implement the strategy described at the end of
Section 2.2.

ent interpretation internally: the opaque interpretation is employed
during elaboration, and datatype specifications are made transpar-
ent only afterward. As the examples of Section 3.3 illustrate, there
are programs that typecheck according to SML but not under the
transparent interpretation even with trailing equivalence, so it is un-
clear what SML/NJ does (after elaboration) in these cases. As it
happens, the final example of Section 3.3, which is valid SML, is
rejected by the SML/NJ compiler.

Curien and Ghelli [4] and Crary [3] have defined languages that use
coercions to replace subsumption rules in languages with subtyp-
ing. Crary’s calculus of coercions includes roll and unroll for
recursive types, but since the focus of his paper is on subtyping he
does not explore the potential uses of these coercions in detail. Nev-
ertheless, our notion of coercion erasure, and the proof of our safety
preservation theorem, are based on Crary’s. The implementation of
Typed Assembly Language for the x86 architecture (TALx86) [10]
allows operands to be annotated with coercions that change their
types but not their representations; these coercions include roll
and unroll as well as introduction of sums and elimination of uni-
versal quantifiers.

Our intermediate language differs from these in that we include co-
ercions in the term level of the language rather than treating them
specially in the syntax. This simplifies the presentation of the coer-
cion interpretation of datatypes, and it simplified our implementa-
tion because it required a smaller incremental change from earlier
versions of the TILT compiler. However, including coercions in the
term level is a bit unnatural, and our planned extension of TILT
with a type-preserving back-end will likely involve a full coercion
calculus.

7 Conclusion

The generative nature of SML datatypes poses a significant chal-
lenge for efficient type-preserving compilation. Generativity can
be correctly understood by interpreting datatypes as structures that
hold their type components abstract, exporting functions that con-
struct and deconstruct datatype values. Under this interpretation,
the inlining of datatype construction and deconstruction operations
is not type-preserving and hence cannot be performed by a typed
compiler such as TILT.

In this paper, we have discussed two approaches to eliminating the
function call overhead in a type-preserving way. The first, doing
away with generativity by making the type components of datatype
structures transparent, results in a new language that is different
from, but neither more nor less permissive than, Standard ML.
Some of the lost expressiveness can be regained by relaxing the
rules of type equivalence in the intermediate language, at the ex-
pense of complicating the type theory. The fact that the transpar-
ent interpretation forbids datatypes to appear in sharing type or
where type signature constraints is unfortunate; it is possible that
a revision of the semantics of these constructs could remove the
restriction.

The second approach, replacing the construction and deconstruc-
tion functions of datatypes with coercions that may be erased dur-
ing code generation, eliminates the function call overhead without
changing the static semantics of the external language. However,
the erasure of coercions only makes sense in a setting where a
recursive-type value and its unrolling are represented the same at
run time. The coercion interpretation of datatypes has been imple-
mented in the TILT compiler.

Although we have presented our analysis of SML datatypes in the
context of Harper-Stone and the TILT compiler, the idea of “co-
ercion types” is one that we think is generally useful. Terms that
serve only as retyping operations are pervasive in typed intermedi-
ate languages, and are usually described as “coercions” that can be
eliminated before running the code. However, applications of these
informal coercions cannot in general be erased if there is no way to
distinguish coercions from ordinary functions by their types; this is
a problem especially in the presence of true separate compilation.
Our contribution is to provide a simple mechanism which permits
coercive terms to be recognized as such and their applications to be
safely eliminated without requiring significant syntactic and meta-
theoretic overhead.

8 References

[1] Roberto Amadio and Luca Cardelli. Subtyping recursive
types. ACM Transactions on Programming Languages and
Systems, 15(4):575–631, 1993.

[2] Michael Brandt and Fritz Henglein. Coinductive axiomatiza-
tion of recursive type equality and subtyping. Fundamenta
Informaticae, 33:309–338, 1998. Invited submission to spe-
cial issue featuring a selection of contributions to the 3d Int’l
Conf. on Typed Lambda Calculi and Applications (TLCA),
1997.

[3] Karl Crary. Typed compilation of inclusive subtyping. In 2000
ACM International Conference on Functional Programming,
Montreal, September 2000.

[4] Pierre-Louis Curien and Giorgio Ghelli. Coherence of sub-
sumption, minimum typing and type-checking in F≤. Mathe-
matical Structures in Computer Science, 2(1):55–91, 1992.

[5] Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Re-
cursive subtyping revealed. In 2000 ACM International Con-
ference on Functional Programming, 2000. To appear in Jour-
nal of Functional Programming.

[6] Jean-Yves Girard. Interprétation fonctionelle et élimination
des coupures de l’arithmétique d’ordre supérieur. PhD thesis,
Université Paris VII, 1972.

[7] Robert Harper and Chris Stone. A type-theoretic interpre-
tation of Standard ML. In Gordon Plotkin, Colin Stirling,
and Mads Tofte, editors, Robin Milner Festschrifft. MIT Press,
1998.

[8] Christopher League and Zhong Shao. Formal semantics of
the FLINT intermediate language. Technical Report Yale-CS-
TR-1171, Yale University, 1998.

[9] Robin Milner, Mads Tofte, Robert Harper, and David Mac-
Queen. The Definition of Standard ML (Revised). MIT Press,
Cambridge, Massachusetts, 1997.

[10] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman,
Richard Samuels, Frederick Smith, David Walker, Stephanie
Weirich, and Steve Zdancewic. TALx86: A realistic typed
assembly language. In Second Workshop on Compiler Sup-
port for System Software, pages 25–35, Atlanta, Georgia, May
1999.

[11] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone.
Implementing the TILT internal language. Technical Report
CMU-CS-00-180, School of Computer Science, Carnegie
Mellon University, December 2000.

[12] Zhong Shao. An overview of the FLINT/ML compiler. In
1997 Workshop on Types in Compilation, Amsterdam, June
1997. ACM SIGPLAN. Published as Boston College Com-
puter Science Department Technical Report BCCS-97-03.

[13] Christopher A. Stone and Robert Harper. Deciding type
equivalence in a language with singleton kinds. In Twenty-
Seventh ACM Symposium on Principles of Programming Lan-
guages, pages 214–227, Boston, January 2000.

[14] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone,
Robert Harper, and Peter Lee. TIL: A type-directed opti-
mizing compiler for ML. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
181–192, Philadelphia, PA, May 1996.

[15] Joseph C. Vanderwaart, Derek Dreyer, Leaf Petersen, Karl
Crary, Robert Harper, and Perry Cheng. Typed compilation
of recursive datatypes. Technical Report CMU-CS-02-200,
School of Computer Science, Carnegie Mellon University,
December 2002.

A Proof of Theorem 1

Suppose that ∀i ∈ 1..n, Γ; /0 ` expand(δi) ≡ τi[~δ/~t]. Then we can
prove the following lemma:

Lemma 1 For any set S ⊆ {1, . . .,n}, define AS = {δi ≡ µi(~t).(~τ) |
i ∈ S}. Then for any S ⊆ {1, . . .,n} and any j ∈ {1, . . .,n}, Γ;AS `
δ j ≡ µ j(~t).(~τ).

Proof Sketch: The proof is by induction on n−|S|. If n−|S| = 0,
then for any j the required equivalence is an assumption in AS and
can therefore be concluded using the assumption rule. If n−|S|> 0,
then there are two cases:

Case: j ∈ S. Then the required equivalence is an assumption
in AS.

Case: j /∈ S. Then let S′ = S∪{ j}. Note that |S′|> |S| and so
n−|S′| < n−|S|. By the induction hypothesis, Γ;AS′ ` δk ≡
µk(~t).(~τ) for every k ∈ {1, . . .,n}. Because substituting equal
types into equal types gives equal results, Γ;AS′ ` τ j[~δ/~t] ≡

τ j[~µ(~t).(~τ)/~t]. By assumption, expand(δ j) ≡ τ j[~δ/~t], so by
transitivity Γ;AS′ ` expand(δ j)≡ τ j[~µ(~t).(~τ)/~t]. The type on
the right side of this equivalence is just expand(µ j(~t).(~τ)), so
by the trailing boxed-unroll rule we can conclude Γ;AS ` δ j ≡

µ j(~t).(~τ), as required. 2

The desired result then follows as a corollary:

Corollary 1 For j ∈ {1, . . .,n}, Γ; /0 ` δ j ≡ µ j(~t).(~τ).

Proof: Choose S = /0. By the Lemma, Γ;A /0 ` δ j ≡ µ j(~t).(~τ). But
A /0 = /0, so we are done. 2

