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Abstract. Modern approaches to garbage collection (GC ) require infor-
mation about which variables and fields contain GC-managed pointers.
Interprocedural flow analysis can be used to eliminate otherwise unneces-
sary heap allocated objects (unboxing), but must maintain the necessary
GC information. We define a core language which models compiler cor-
rectness with respect to the GC, and develop a correctness specification
for interprocedural unboxing optimizations. We prove that any optimiza-
tion which satisfies our specification will preserve GC safety properties
and program semantics, and give a practical unboxing algorithm satis-
fying this specification.

1 Introduction

Precise garbage collection (GC ) for managed languages is usually implemented
by requiring the compiler to keep track of meta-data indicating which variables
and fields contain GC-managed references and which should be ignored by the
garbage collector. We refer to this information as the traceability of a field or
variable: a field or variable is traceable if it should be treated as a pointer into
the heap by the garbage collector.

In order to maintain this information in the presence of polymorphic func-
tions (including subtype polymorphism), many languages and compilers use a
uniform object representation in which every source level object is represented at
least initially by a heap allocated object. All interprocedural use of native (non-
heap) data therefore occurs only through fields of objects. This is commonly
referred to as boxing, objects represented in this way are referred to as boxed,
and projecting out of the uniform representation is referred to as unboxing. Box-
ing imposes substantial performance penalties for many reasons: the additional
overhead of the allocation and projection is substantial, arrays of boxed objects
exhibit poor locality, and the additional memory pressure can cause bottlenecks
in the hardware. In this paper, we show how to use the results of interprocedural
flow analyses (reaching definitions) to implement an interprocedural unboxing
optimization while preserving the meta-data necessary for precise garbage col-
lection.

In the following sections, we define a high-level core language that captures
the essential aspects of GC meta-data and GC safety. We then give a high-level
specification of what a reasonable flow analysis on this language must compute,



and define a notion of a general unboxing optimization for this language. We
give a specification for when such an optimization is acceptable for a given flow
analysis. We show that the optimization induced by an acceptable unboxing
preserves the semantics of the original program, including GC safety. Finally, we
construct an algorithm closely based on one in use in our compiler and prove
that it produces an unboxing that satisfies our correctness specification, and
hence that it preserves the semantics of the program (including GC safety).

All the lemmas and theorems in the paper have been proven. Proofs are avail-
able in an extended technical report available from the first author’s website[7].

2 GC safety

Consider the following program (using informal notation), where box denotes
a boxing operation that wraps its argument in a heap-allocated structure, and
unbox denotes its elimination form that projects out the boxed item from the
box:

let f = λx.(boxx) in unbox(unbox(f (box 3)))

The only definition reaching the variable x is the boxed machine integer 3. In-
formation from an interprocedural analysis can be used to rewrite this program
to eliminate the boxing as follows:

let f = λx.x in f 3

In the second version of this program, the traceability of the values reaching
x has changed: whereas in the original program all values reaching x are repre-
sented as heap allocated pointers, in the second program all values reaching x are
represented as machine integers. From the standpoint of a garbage collector, a
garbage collection occuring while x is live must treat x as a root in the first pro-
gram, and must ignore x in the second program. There are numerous approaches
to communicating this information to the garbage collector. For example, some
implementations choose to dynamically tag values in such a way as to allow the
garbage collector to distinguish pointers from non-pointers by inspection. Such
an implementation might steal a low bit from the machine integer representation
to allow the machine integer 3 to be distinguished from a heap pointer.

Another very commonly used approach (particularly in more recent systems)
is to require the compiler to statically annotate the program with garbage col-
lection meta-data such that at any garbage collection point the garbage collector
can reconstruct exactly which live variables are roots. Typically, this takes the
form of annotations on variables and temporaries indicating which contain heap-
pointers (the roots) and which do not (the non-roots), along with information
at every allocation site indicating which fields of the allocated object contain
traceable data. It is this approach that we target in this paper.

The requirement that the compiler be able to annotate program variables
with a single static traceability constrains the compiler’s ability to rewrite pro-
grams in that it must do so in a way that preserves the correctness of the GC



meta-data of the program. Consider an extension of the previous example.

let f = λx.x in unbox((f f) (box 3))

Assuming that functions are represented as heap-allocated objects then each
variable in this program can be assigned a traceability, since all objects passed
to f are heap references. However, an attempt to unbox this program as with
the previous example results in f being applied to both heap references (f) and
non-heap references (3).

let f = λx.x in(f f) 3

As this example shows, the concerns of maintaining garbage-collector meta-data
constrain optimization1 in ways not apparent in a GC-ignorant semantic model.

2.1 A core language for GC safety

In order to give a precise account of interprocedural unboxing, we begin by defin-
ing a core language capturing the essential features of GC safety. The motivation
for the idiosyncracies of this language lies in the requirements of the underlying
model of garbage collection. We assume that pointers cannot be intrinsically
distinguished from non-pointers, and hence must be tracked by the compiler. In
our implementation, the compiler intermediate language under consideration is
substantially more low-level: a control-flow graph based, static single assignment
intermediate representation. We believe however that all of the key issues are
captured faithfully in this higher-level representation.

Traceabilities t ::= b | r
Term variables x, y, z

Constants c
Labels i ::= 0, 1, . . .

Labeled Terms e ::= mi | vi

Terms m ::= x | λxi:t.e | e1 e2 | boxt e |
unbox e | ρ(e)

Values v ::= c | 〈ρ, λxi:t.e〉 | 〈vi:t〉
Environments ρ ::= xi11 :t1 = v1

j1 , . . . , xinn :tn = vn
jn

States M ::= (ρ, e)

Fig. 1. Syntax

Figure 1 defines the syntax of our core language. The essence of the language
is largely that of the standard untyped lambda calculus with an explicit envi-
ronment semantics, extended with a form of degenerate type information we call
traceabilities. Traceabilities describe the GC status of variables: the traceability
b (for bits) indicates something that should be ignored by the garbage collec-
tor, while the traceability r (for reference) indicates a GC-managed pointer.

1 It is worth noting that a serious compiler might be expected to duplicate the body
of f in this simple example thereby eliminating this constraint and allowing the
unboxing optimization to be more effective.



The traceability b is inhabited by an unspecified set of constants c while the
traceability r is inhabited by functions (anticipating their implementation by
heap-allocated closures) and by boxed objects. Anticipating the needs of the
flow analysis, we label each term, value, and variable binding site with an inte-
ger label. We do not assume that labels or variables are unique within a program.

Expressions e consist of labeled terms mi and labeled values vi. The terms m
consist of variables, functions, applications, box introductions, box eliminations,
and frames. Variable binding sites are decorated with traceability information
(λxi:t.e), as are box introductions (boxt e). We represent heap allocation in the
language via the boxt e term, which corresponds to allocating a heap cell con-
taining the value for e. The traceability t gives the meta-data with which the
heap-cell will be tagged, allowing the garbage collector to trace the cell. Objects
can be projected out of an allocated object by the unbox e operation. Frames
ρ(e) are discussed below.

Values consist of either constants, closures, or heap-allocated boxes. We dis-
tinguish between the introduction form (boxt e) and the value form (〈vi:t〉) for al-
located objects. The introduction form corresponds to the allocation instruction,
whereas the value form corresponds to the allocated heap value. This distinction
is key for the formulation of GC safety and the dynamic semantics. For the pur-
poses of the dynamic semantics we also distinguish between functions (λxi:t.e)
and the heap allocated closures that represent them at runtime (〈ρ, λxi:t.e〉).

For notational convenience, we will sometimes use the notation vb to indicate
that a value v is a non-heap-allocated value (i.e. a constant c), and vr to indicate
that a value v is a heap-allocated value (i.e. either a lambda value or a boxed
value). If t is a traceability meta-variable, then we use vt to indicate that v is a
value of the same traceability as t. In examples, we use a derived let expression,
taking it to be syntactic sugar for application in the usual manner. Environments
ρ map variables to values. The term ρ(e) executes e in the environment ρ rather
than the outer environment – all of the free variables of e are provided by ρ. The
nested set of these environments at any point can be thought of as the activation
stack frames of the executing program. The traceability annotations on variables
in the environments play the role of stack frame GC meta-data, indicating which
slots of the frame are roots (traceability r). The environments buried in closures
(〈ρ, λxi:t.e〉) similarly provide the traceabilities of values reachable from the
closure, and hence provide the GC meta-data for tracing through closures. While
we do not make the process of garbage collection explicit, it should be clear how
to extract the appropriate set of GC roots from the environment and any active
frames.

This core language contains the appropriate information to formalize a notion
of GC safety consisting of two complementing pieces. First we define a dynamic
semantics in which reductions that might lead to undefined garbage-collector
behavior are explicitly undefined. Programs that takes steps in this semantics do
not introduce ill-formed heap objects. Secondly, we define a notion of a traceable
program: one in which all heap values have valid GC meta-data. Reduction steps
in the semantics can then be shown to maintain the traceability property. The



GC correctness criteria for a compiler optimization then is that the optimization
map traceable programs to traceable programs, and that it not introduce new
undefined behavior.

2.2 Operational semantics

We choose to use an explicit environment semantics rather than a standard
substitution semantics since this makes the GC meta-data for stack frames and
closures explicit in the semantics. Thus a machine state (ρ, e) supplies an environ-
ment ρ for e that provides the values of the free variables of e during execution.
Environments contain traceability annotations on each of the variables mapped
by the environment.

xi:t = vj ∈ ρ

(ρ, xk) 7−→ (ρ, vj) (ρ, (λxi:t.e)
j
) 7−→ (ρ, 〈ρ, λxi:t.e〉j)

t = t′

(ρ, (boxt vt′
i)
j
) 7−→ (ρ, 〈vt′ i:t〉

j
)

(ρ, e1) 7−→ (ρ, e′1)

(ρ, (e1 e2)i) 7−→ (ρ, (e′1 e2)
i
)

(ρ, e2) 7−→ (ρ, e′2)

(ρ, (vi e2)
j
) 7−→ (ρ, (vi e′2)

j
)

t = t′

(ρ, (〈ρ′, λxi:t.e〉j vt′k)
l
) 7−→ (ρ, (ρ′, xi:t = vt′

k)(e)
l
)

(ρ, e) 7−→ (ρ, e′)

(ρ, (boxt e)
i) 7−→ (ρ, (boxt e

′)
i
)

(ρ, e) 7−→ (ρ, e′)

(ρ, (unbox e)i) 7−→ (ρ, (unbox e′)
i
) (ρ, (unbox 〈vi:t〉j)

k
) 7−→ (ρ, vi)

(ρ′, e) 7−→ (ρ′, e′)

(ρ, ρ′(e)
i
) 7−→ (ρ, ρ′(e′)

i
)

(ρ, ρ′(vi)
j
) 7−→ (ρ, vi)

Fig. 2. Operational Semantics

Reduction in this language is for the most part fairly standard. We deviate
somewhat in that we explicitly model the allocation of heap objects as a reduc-
tion step—hence there is an explicit reduction mapping a lambda term λxi:t.e
to an allocated closure 〈ρ, λxi:t.e〉, and similarly for boxed objects and values.
More notably, beta-reduction is restricted to only permit construction of a stack
frame when the meta-data attached to the parameter variable is appropriate for
the actual argument value. This captures the requirement that stack frames have
correct meta-data for the garbage collector. In actual practice, incorrect meta-
data for stack frames leads to undefined behavior (since incorrect meta-data may



cause arbitrary memory corruption by the garbage collector)—similarly here in
the meta-theory we leave the behavior of such programs undefined. In a similar
fashion, we only define the reduction of the allocation operation to an allocated
value (boxt vt′ 7−→ 〈vt′ :t〉) when the operation meta-data is appropriate for the
value (i.e. t = t′).

It is important to note that this semantics does not model a dynamically
checked language, in which there is an explicit check of the meta-data associated
with these reductions. The point is simply that the semantics only specifies how
programs behave when these conditions are met—in all other cases the behavior
of the program is undefined.

2.3 Traceability

Labeled Terms ` e tr

` m tr

` mi tr

`v v:t

` vi tr

Terms ` m tr

` x tr

` e tr

` λxi:t.e tr

` e1 tr
` e2 tr

` e1 e2 tr

` e tr

` boxt e tr

` e tr

` unbox e tr

` ρ tr
` e tr

` ρ(e) tr

Values `v v:t

`v c:b
` ρ tr ` e tr

`v 〈ρ, λxi:t.e〉:r

`v v:t

`v 〈vi:t〉:r

Environments ` ρ tr

`v v1:t1 · · · `v vn:tn

` xi11 :t1 = v1
j1 , . . . , xinn :tn = vn

jn tr

Machine States `M tr

` ρ tr ` e tr

` (ρ, e) tr

Fig. 3. Traceability

The operational semantics ensures that no reduction step introduces mis-
tagged values. In order to make use of this, we define a judgment for checking
that a program does not have a mis-tagged value in the first place. Implicitly
this judgement defines what a well-formed heap and activation stack looks like;
however, since our heap and stack are implicit in our machine states, it takes
the form of a judgement on terms, values, environments, and machine states.

The value judgement `v v:t asserts that a value v is well-formed, and has
traceability t. In this simple language, this corresponds to having the meta-data
on the environment of each lambda value be consistent and the meta-data on
each boxed value be consistent with the traceability of the object nested in the
box. An environment is consistent, ` ρ tr, when the annotation on each variable
agrees with the traceability of the value it is bound to. Since we cannot check



the consistency of general terms with the first-order information available, the
term judgement ` e tr and machine state judgement `M tr simply check that
all values and environments (and hence stack frames) contained in the term or
machine state are well-formed.

The key result for traceability is that it is preserved under reduction. That
is, if a traceable term takes a well-defined reduction step, then the resulting term
will be traceable.

Lemma 1 (Preservation of traceability). If ` M tr and M 7−→ M ′ then
`M ′ tr.

There is of course no corresponding progress property for our notion of trace-
ability, since programs can go wrong. Compiler optimizations are simply respon-
sible for ensuring that they do not introduce new ways to go wrong.

3 Flow analysis

Our original motivation for this work was to apply interprocedural analysis to the
problem of eliminating unnecessary boxing in programs. There is a vast body of
literature on interprocedural analysis and optimization, and it is generally fairly
straightforward to use these approaches to obtain information about what terms
flow to what use sites. This paper is not intended to provide any contribution
to this body of work, which we will broadly refer to as flow analysis. Instead,
we focus on how to use the results of such a generic analysis to implement an
unboxing optimization that preserves GC safety.

In order to do this, we must provide some framework for describing what
information a flow analysis must provide. For the purposes of our unboxing op-

timization, we are interested in finding (inter-procedurally) for every (unbox vj)
i

operation the set of (boxt e)
k

terms that could possibly reach v. Under appro-
priate conditions, we can then eliminate both the box introductions and the
box elimination, thereby improving the program. The core language defined in
Section 2 provides labels serving as proxies for the terms and variables on which
they occur – the question above can therefore be re-stated as finding the set of
labels k that reach the position labeled with j.

More generally, following previous work we begin by defining an abstract
notion of analysis. We say that an analysis is a pair (C, %). Binding environments
% simply serve to map variables to the label of their binding sites. The mappings
are, as usual, global for the program. Consequently, a given environment may
not apply to alpha-variants of a term. We do not require that labels be unique
within a program—as usual however, analyses will be more precise if this is
the case. Variables are also not required to be unique (since reduction may
duplicate terms and hence binding sites). However, duplicate variable bindings
in a program must be labeled consistently according to % or else no analysis of
the program can be acceptable according to our definition. This can always be
avoided by alpha-varying or relabeling appropriately.



A cache C is a mapping from labels to sets of shapes. Shapes are given by
the grammar:

Shapes: s ::= ci | (i:t→ j)
k | (boxt i)j

The idea behind shapes is that each shape provides a proxy for a set of terms that
might flow to a given location, describing both the shape of the values that might
flow there and the labels of the sub-components of those values. For example,
for an analysis (C, %), ci ∈ C(k) indicates that (according to the analysis) the
constant c, labeled with i, might flow to a location labeled with k. Similarly,
if (i:t→ j)

k ∈ C(l), then the analysis specifies that among the values flowing
to locations labeled with l might be lambdas labeled with k, whose parameter
variable is labeled with i and annotated with t and whose bodies are labeled
with j. If (boxt k)

i ∈ C(l) then among the values that might flow to l (according
to the analysis) are boxed values labeled with i, with meta-data t and whose
bodies are labeled by some j such that C(j) ⊆ C(k).

It is important to note that the shapes in the cache may not correspond
exactly to the terms in the program, since reduction may change program terms
(e.g. by instantiating variables with values). However, reduction does not change
the outer shape and labeling of values—it is this reduction invariant information
that is captured by shapes.

Clearly, not every choice of analysis pairs is meaningful for program opti-
mization. While in general it is reasonable (indeed, unavoidable) for an analysis
to overestimate the set of terms associated with a label, it is unacceptable for an
analysis to underestimate the set of terms that flow to a label—most optimiza-
tions will produce incorrect results, since they are designed around the idea that
the analysis is telling them everything that could possibly flow to them. In order
to capture the notion of when an analysis pair gives a suitable approximation
of the flow of values in a program we follow the general spirit of Nielson et al.
[6], and define a notion of an acceptable analysis. That is, we give a declarative
specification that gives sufficient conditions for specifying when a given analysis
does not underestimate the set of terms flowing to a label, without commit-
ting to a particular analysis. We arrange the subsequent meta-theory such that
our results apply to any analysis that is acceptable. In this way, we completely
decouple our optimization from the particulars of how the analysis is computed.

Our acceptable-analysis relation is given in Figure 4 – the judgement C; % `
(ρ, e) determines that an analysis pair (C, %) is acceptable for a machine state
(ρ, e), and similarly for the environment and expression forms of the judgement.
We use the notation lbl(e) to denote the outermost label of e: that is, i where e
is of the form mi or vi. The acceptability judgement generally indicates for each
syntactic form what the flow of values is. For example, in the application rule,
the judgment insists that for every lambda value that flows to the applicand
position, the set of shapes associated with the parameter of that lambda is a
super-set of the set of shapes associated with the argument of the application;
and that the set of shapes associated with the result of the lambda is a sub-set
of the set of shapes associated with the application itself.



C; % ` e

C(%(x)) ⊆ C(i)

C; % ` xi

%(x) = j C; % ` e (j:t→ lbl(e))i ∈ C(i)

C; % ` (λxj :t.e)
i

C; % ` e1 C; % ` e2
∀(k:t→ l)j ∈ C(lbl(e1)) :

C(lbl(e2)) ⊆ C(k) ∧ C(l) ⊆ C(i)

C; % ` (e1 e2)i

C; % ` e (boxt j)
i ∈ C(i) C(lbl(e)) ⊆ C(j)

C; % ` (boxt e)
i

C; % ` e
∀(boxt k)j ∈ C(lbl(e)) : C(k) ⊆ C(i)

C; % ` (unbox e)i

C; % ` ρ C; % ` e C(lbl(e)) ⊆ C(i)

C; % ` ρ(e)i

ci ∈ C(i)

C; % ` ci

%(x) = j C; % ` ρ C; % ` e (j:t→ lbl(e))i ∈ C(i)

C; % ` 〈ρ, λxj :t.e〉i

C; % ` vj (boxt k)i ∈ C(i) C(j) ⊆ C(k)

C; % ` 〈vj :t〉i

C; % ` ρ

∀1 ≤ k ≤ n : %(xk) = ik ∧ C(jk) ⊆ C(ik) ∧ C; % ` vkjk

C; % ` xi11 :t1 = vi
j1 , . . . , xinn :tn = vn

jn

C; % `M

C; % ` ρ C; % ` e

C; % ` (ρ, e)

Fig. 4. Acceptable Analysis

Given this definition, we can show that the acceptability relation is preserved
under reduction.

Lemma 2 (Many-step reduction preserves acceptability). If C; % ` M
and M 7−→∗ M ′ then C; % `M ′.

4 Unboxing

The goal of the unboxing optimization is to use the information provided by
a flow analysis to replace a boxed object with the contents of the box. Doing



so may change the traceability, since the object in the box may not be a GC-
managed reference. Moreover, the object in the box may itself be a candidate for
unboxing; consequently, determining the traceability of boxed objects depends
on exactly which objects are unboxed. Function parameters may be instanti-
ated with objects from multiple different definition sites, some of which may be
unboxed and some of which may not.

Consider again the first example from Section 1, written out with explicit
GC information and labels:

let f0:r = (λx1:r.(boxr x
2)

3
)
4
in (unbox (unbox (f5 (boxb 36)

7
)
8
)
9

)
10

It is fairly easy to see that this program is unboxable. The binding site for x
is only reached by the term labeled with 7 (the outer box introduction), and
hence there should be no problems with changing its traceability annotation.
Each box elimination is reached only by a single box introduction, and hence
the box/unbox pairs in this program should be eliminable, yielding an optimized
program:

let f0:r = (λx1:b.x2)
4
in (f5 36)

8

Notice that in order to rewrite the program, we have had to change the trace-
ability annotation at the binding site for x, since we have eliminated the box
introduction on its argument. This constraint is imposed on us by the need to
keep the GC information consistent. If we choose (perhaps because of limita-
tions on the precision of the analysis, or perhaps because of other constraints)
to only eliminate the innermost box/unbox pair, then we must similarly adjust
the traceability annotation on the remaining box introduction (labeled with 3).

let f0:r = (λx1:b.(boxb x
2)

3
)
4
in (unbox (f5 36)

8
)
9

Not all programs can be consistently rewritten in this manner. If we consider
again the second example from Section 1, we see an example of a program in
which we must forgo optimization if we wish to preserve GC safety.

let f0:r = (λx1:r.x2)
3
in (unbox ((f4 f5)

6
(boxb 37)

8
)
9
)
10

It is easy to see that any acceptable analysis must include the function labeled
with 3 and the boxed term labeled with 8 in the set of terms reaching the binding
site for x, labeled with 1. We might naively attempt to eliminate the box/unbox
pair as follows:

let f0:r = (λx1:?.x2)
3
in ((f4 f5)

6
37)

9

Unfortunately, there is no consistent choice of traceability annotation for the
binding site for x. If we choose b as the traceability annotation then after reduc-
tion we arrive at a state that has no defined reduction:

((〈ε, λx1:b.x2〉3 〈ε, λx1:b.x2〉3)
6

37)
9



The first application leads to undefined behavior, since the traceability of the
argument value does not match the traceability annotation on the parameter
variable. If we had instead chosen r as the traceability annotation, then one
further reduction would still lead us to undefined behavior.

(〈ε, λx1:r.x2〉3 37)
9

The requirement to preserve GC information imposes two burdens on us
then: we must provide some mechanism for assigning new GC meta-data when
we optimize the program, and we must also ensure that we do not optimize the
program in a way that does not admit a consistent assignment of such meta-
data. In the rest of this section, we first develop a framework for specifying an
unboxing assignment regardless of any correctness concerns, and then separately
define a judgement specifying when such an assignment is a reasonable one.

4.1 The unboxing optimization

We can divide the problem of specifying an unboxing into two sub-parts: choosing
the particular box/unbox pairs that are valid to eliminate and assigning new
traceability annotations to terms that are affected. An unboxing then is a pair
(T, Υ ), where Υ is a set of labels, and T is a partial function from labels to
traceabilities. The unboxed set Υ is the set of labels to be unboxed, and the
traceability map T specifies new traceabilities for labels affected by the unboxing.
The fact that T is a partial function is essential for several reasons. On a technical
level, we do not require that labels be unique in a program. Consequently, it is
possible that there is no consistent choice for a specific label. More importantly,
requiring that T be a total function would put unsatisfiable requirements on
the flow analysis. For example, a program that allocates a mis-tagged object
after going into an infinite loop is GC safe according to our specification since
the bad allocation is never reached. Requiring the analysis to find a consistent
traceability map for such a program is equivalent to requiring it to solve the
halting problem, since it must statically prove that the set of values dynamically
reaching the mis-tagged allocation site is empty. By allowing T to be a partial
function, we allow for necessary imprecision in the analysis. Also of importance
is the need to allow for relative imprecision in the analysis. In order to achieve
faster compile times, we may choose to use less precise analyses that potentially
over-approximate the set of terms reaching a use point. Consequently, even if
a consistent traceability assignment exists, we may not have sufficiently precise
information to construct it.

An unboxing pair defines a total function mapping labeled terms to labeled
terms, as shown in Figure 5. For notational convenience, we take T(i) = t as
asserting that i is in the domain of T, and that its image is t. We also say that:
T(i) ≥ t if and only if T(i) = t or T(i) is undefined; and T(i, t) = T(i) if T
defined at i, otherwise t.

An important observation about the unboxing optimization as we have de-
fined it is unlike many previous interprocedural approaches (Section 6), it only
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Fig. 5. Unboxing

improves programs and never introduces instructions or allocation. This is easy
to see, since the unboxing function only removes boxes (which allocate and have
an instruction cost), and unboxes (which have an instruction cost) and never
introduces any new operations at all.

4.2 Acceptable unboxings

While any choice of (T, Υ ) defines an unboxing, not every unboxing pair is rea-
sonable in the sense that it defines a semantics preserving optimization. Just as
we defined a notion of acceptable analysis in Section 3, we will define a judge-
ment that captures sufficient conditions for ensuring correctness of an unboxing,
without specifying a particular method of choosing such an unboxing. By us-
ing analyses of different precisions or choosing different optimization strategies
we may end up with quite different choices of unboxings; however, so long as
they satisfy our notion of acceptability we can be sure that they will preserve
correctness.

Informally, we can eliminate a box introduction if certain criteria are met.
Firstly, we must be able to eliminate all of the unbox operations that it reaches.
Secondly, we must be able to find a consistent traceability assignment covering
each intermediate variable or field that it reaches, given all of the rest of our
unboxing choices. We can eliminate an unbox operation if we can eliminate all
of the box operations that reach it. Finally, we must also impose coherence re-
quirements on traceability assignments. For every variable whose binding-site
label occurs in the domain of T, we require that its new traceability assignment
agree with the traceability assignment of all of its reaching definitions. Similarly,
for every box introduction (or value form) that is not itself unboxed, we re-
quire that the traceability assignment for its contents agree with the traceability
assignment for every reaching definition in the flow analysis.



This informal description is made precise in Figure 6. We use the notation

i
T,Υ
' j to indicate when an unboxing agrees at two labels i and j.

i
T' j iff either T(i) = T(j) (both defined) or T(i) and T(j) undefined

i
Υ' j iff either i, j ∈ Υ or i, j /∈ Υ

i
T,Υ
' j iff i

T' j and i
Υ' j

An unboxing pair (T, Υ ) is acceptable relative to an analysis (C, %) for a program
M (judgement C `M �� (T, Υ )) if the unboxing is cache consistent (judgement
C ` (T, Υ )), and consistent (judgement T, Υ `M).

T, Υ ` e

T, Υ ` xi

T, Υ ` e
T(j) ≥ r

T, Υ ` (λxi:t.e)
j

T, Υ ` e1
T, Υ ` e2

T, Υ ` (e1 e2)i

i ∈ Υ
T(i) = T(lbl(e))

T, Υ ` e

T, Υ ` (boxt e)
i

i /∈ Υ T(i) ≥ r

T, Υ ` e

T, Υ ` (boxt e)
i

T, Υ ` e

T, Υ ` (unbox e)i

T, Υ ` ρ T, Υ ` e

T, Υ ` ρ(e)i

T(i) ≥ b

T, Υ ` ci

T, Υ ` ρ T, Υ ` e T(j) ≥ r

T, Υ ` 〈ρ, λxi:t.e〉j

j ∈ Υ T(j) = T(i)
T, Υ ` vi

T, Υ ` 〈vi:t〉j

j /∈ Υ T(j) ≥ r
T, Υ ` vi

T, Υ ` 〈vi:t〉j

T, Υ ` ρ
∀1 ≤ k ≤ n : T(ik, tk) = T(jk, tk) ∧ T, Υ ` vkjk
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Fig. 6. Consistent and acceptable unboxing

Cache consistency C ` (T, Υ ) encapsulates the requirement that an unbox
can only be eliminated if all of the reaching definitions of its target are unboxed.
It requires agreement between the label of the target of the unbox and the labels
of everything in the cache of the target. The results from Section 3 ensure that
under any evaluation, any term reaching the unbox is in the cache of the original



target label, and hence that the unboxing approximation takes into account a
sufficient set of terms2.

Cache consistency does not put any constraints on the actual choice of trace-
abilities in T. The consistency judgement (T, Υ `M) ensures that the traceabil-
ity map T encodes choices that are compatible with the actual labeled terms in
M , given a particular choice of terms to unbox Υ .

For environments, the consistency judgement insists that the traceability
map assign consistent traceabilities to values and the variables to which they are
bound. In this way we can ensure that the result of unboxing an environment
still provides good traceability information for the garbage collector.

The term consistency judgement for the most part only requires that the
traceability map be consistent with the labeled values. Variable uses incur no
constraints, and neither do applications nor unbox operations (beyond requiring
the consistency of their sub-terms). For constants ci, we require that the trace-
ability assignment T, if defined at i, maps i to b. That is, we require that the
traceability assignment for i is consistent with the actual term inhabiting the la-
bel. Functions have a similar requirement: the traceability assignment for their
label, if present, must be r since functions are represented by heap allocated
closures. In the value form the closed over environment must be consistent as
well.

The only particularly interesting rules are those covering the boxed intro-
duction form and isomorphically the boxed value form. There are two cases: one
for when the boxed value is selected for unboxing (that is, its label is in Υ ), and
one for when it has not been selected for unboxing.

If the term is not to be unboxed (j /∈ Υ ), then the consistency rule requires
that its traceability assignment (if any) be r. In the case that the term is to be
unboxed (j ∈ Υ ) this is not required since the unboxed value may not in fact
end up having traceability r. Instead, we require that the traceability map have
an assignment both for the label of the box (j), and for the label of the contents
of the box (i), and that it assign the same traceability to both. This requirement
may be somewhat unexpected at first. The intuition behind it is that the end
result of unboxing will replace the outer box by the inner boxed value; therefore
we wish to treat the boxed value as having the same traceability as its contents.

Our goal is to show that the unboxing function induced by any acceptable
unboxing is in some sense correct as an optimization. The first part of this is to
show that unboxing preserves traceability.

Theorem 1 (Consistent unboxings preserve traceability).

– If T, Υ ` vi and `v vi:t then `v �vi�
T
Υ :T(i, t).

– If T, Υ ` e and ` e tr then ` �e�TΥ tr.

– If T, Υ ` ρ and ` ρ tr then ` �ρ�TΥ tr.

– If T, Υ `M and `M tr then ` �M�TΥ tr.

2 See the cache refinement lemma in the extended technical report [7] for more detail.



Theorem 1 tells us that if we have a traceable program, then the result of
unboxing it is still traceable. The second step to showing correctness is to show
that unboxing does not introduce new undefined behavior.

Theorem 2 (Coherence).

– If C; % ` M , C ` M �� (T, Υ ), and M 7−→∗ (ρ, vi) then �M�TΥ 7−→∗

(�ρ�TΥ , �v
i�
T
Υ ).

– If C; % `M , C `M �� (T, Υ ), and M 7−→ · · · then �M�TΥ 7−→ · · · .

Theorem 2 shows that if two terms are related by reduction, then their im-
ages under the unboxing function are also related by the many step reduction
relation given that the unboxing pair is acceptable; and that if a term diverges
under reduction, then its image under the unboxing function also diverges. In
other words, for an acceptable analysis and an acceptable unboxing, the induced
unboxing function preserves the semantics of the original program up to elimi-
nation of boxes. Since the semantics of the core language only defines reduction
steps that preserve GC safety, this theorem implies that the image of a GC safe
program under unboxing is also GC safe.

5 Construction of An Acceptable Unboxing

The previous section gives a declarative specification for when an unboxing pair
(T, Υ ) is correct but does not specify how such a pair might be produced. In
this section we give a simple algorithm for constructing an acceptable unboxing
given an arbitrary acceptable flow analysis.

The idea behind the algorithm is that given a program and an acceptable
flow analysis for it, we use the results of the flow analysis to construct the
connected components of the inter-procedural flow graph of the program. Each
connected component initially defines its own equivalence class. For each equiv-
alence class, we then compute the least upper bound of the traceabilities of all
of the introduction forms of all of the elements of the component except the box
introductions. Box introductions are left initially unconstrained, since we intend
to eliminate them. If the least upper bound is well-defined, then the equivalence
class can potentially be eliminated. We then consider each box introduction in
turn and attempt to eliminate it by combining the respective equivalence classes
of the box and its contents. This is possible whenever doing so will not over-
constrain the resulting combined equivalence class. When all possible boxes have
been eliminated, the algorithm terminates. In the rest of the section, we make
this informal algorithm concrete and show that the choice of unboxing that it
produces is in fact acceptable.

For the purposes of this section we ignore environments and the intermediate

forms ρ(e), 〈ρ, λxi:t.e〉j and 〈vi:t〉j . These constructs are present in the language
solely as mechanisms to discuss the dynamic semantics—in this sense they can be
thought of as intermediate terms, rather than source terms. It is straightforward
to incorporate these into the algorithm if desired.



Given a flow analysis (C, %), we define the induced undirected flow graph FG
as an undirected graph with a node for every label in C, and edges as follows.

– For every label i and every shape s ∈ C(i), we add an edge between i and
lbl(s).

– For every box introduction in the program (boxt e)
i

and every shape in the

cache (boxt j)
i ∈ C(i) we add an edge between lbl(e) and j.

The first set of edges simply connects up each program point with all of its
reaching definitions. The second set of edges is added to simplify the proofs in
the pathological case that e has no reaching definitions (and hence the box itself
is dynamically dead and unreachable): in the usual case where values reach e
then the definition of an acceptable analysis implies that these edges are already
present.

We define equivalence classes of labels as disjoint sets of labels in the usual
way. The function EC maps labels i to the disjoint set containing i. We extend
traceabilities t to a complete flat lattice t̂ with a top element >, a bottom element
⊥ and the usual least upper bound function on t̂.

> t t = >
t t > = >

⊥ t t = t
t t ⊥ = t

t t t = t
b t r = >
r t b = >

We initialize the mapping EC by finding the connected components of the
induced undirected flow-graph FG, and initializing EC(i) with the connected
component containing i. As the algorithm proceeds, two equivalence classes may
be collapsed into a single equivalence class requiring an updated mapping EC.

We maintain a set of equivalence classes CN consisting of current candidates
for unboxing. When equivalence classes are collapsed, the elements of CN are
adjusted appropriately, as will be shown.

We maintain a set of labels Υ , which is an unboxing set in the sense of Section
4. The set Υ at all times contains all of the labels already selected for unboxing,
and is initially empty.

We maintain an extended traceability map T that maps equivalence classes
to extended traceabilities t̂. For notational convenience we define TEC to be the
derived function mapping labels to the extended traceabilities of their equiva-
lence classes: TEC(k) = T (EC(k)). The derivation of a standard traceability map
T from an extended traceability map T is then given as follows.

T(k) = TEC(k) ⊥ < TEC(k) < >
T(k) = r TEC(k) = ⊥
T(k) = undefined TEC(k) = >

The general idea is that an equivalence class is mapped by the T function to the
least upper bound of the traceabilities of all of the reaching definitions of all of
the labels in the equivalence class. An equivalence class containing no reaching
definitions will be unconstrained – for technical reasons we choose an arbitrary
traceability (r) for such classes. An equivalence class containing definitions with



inconsistent traceabilities will have no defined traceability in the induced map-
ping.

During the algorithm traceability constraints imposed by box introductions
in the candidate set are left out of the initial mapping and hence must be added
back in before computing the induced traceability map. We write T CN for the
extended traceability map obtained by adding in the delayed constraints for each
equivalence class, and T CNEC for the extension of this to individual labels given
by T CNEC (i) = T CN (EC(i)).

T CN (EC(k)) = T (EC(k)) if EC(k) /∈ CN
T CN (EC(k)) = T (EC(k)) t r if EC(k) ∈ CN

Note that by definition, if labels i and j are in the same equivalence class
(EC(i) = EC(j)), then the traceability map T induced by an extended traceability
map T agrees on i and j.

We define the immediate extended traceability of a labeled term itr(e) as
follows.

itr(ci) = b

itr((λxi:t.e)
j
) = r

itr((boxt e)
i
) = r

itr(e) = ⊥ otherwise

The algorithm starts with an empty unboxing set Υ . The candidate set CN
is initialized by including EC(i) for each (boxt e)

i
in the program. The extended

traceability map is initialized by setting for each equivalence class S:

T (S) =
⊔

i∈S, s∈C(i), s 6=(boxt k)
j

itr(s)

That is, we take the extended traceability associated with the equivalence class
S to be least upper bound of the immediate traceabilities of all of the elements
of the cache of all the labels in the equivalence class, except those which are box
introductions. The practical effect of this is to make the extended traceability of
every label be the least upper bound of the traceability of every introduction form
in its connected component (again, excepting boxes). An equivalence class that
is unconstrained (⊥) either counts only box introductions among its definitions,
or contains no definitions at all and hence is uninhabited (this can arise because
of unreachable code).

The result of the initialization phase is a (T , Υ, CN , EC) quadruple, which
induces an unboxing pair (T, Υ ) where T = T CNEC . It can be shown that the
unboxing pair induced in this manner is acceptable.

Lemma 3 (The initial unboxing is acceptable). If C; % ` e then the unbox-
ing quadruple (T , Υ, CN , EC) computed by the algorithm in this section induces
an unboxing (T, Υ ) (where T = T CNEC ) such that C ` (T, Υ ) and T, Υ ` e.

The unboxing pair created by the initial phase is acceptable, but does no
unboxing. The second phase of the algorithm proceeds by incrementally moving
equivalence classes from the candidate set CN to the unboxing set Υ , while
maintaining the invariant that at every step (T , Υ, CN , EC) define an acceptable



(and increasingly useful) unboxing. Equivalence classes of boxes that get chosen
for unboxing are collapsed into the same equivalence class as the contents of the
box. We use the notation EC′ = ∪i,jEC to stand for combining the equivalence
classes for i and j to get a new equivalence class in the usual way.

For the unboxing steps, we consider in turn each (boxt e)
i

in the program.
Let T be the traceability map induced by T . The principal selection criterium
for choosing which things to unbox is that TEC(i) t T CNEC (lbl(e)) < >. The idea
is that under the assumption that no further unboxing is done, combining the
equivalence classes for i and lbl(e) will not over-constrain the resulting equiva-
lence class, and hence that the final induced traceability map will be well-defined
at i and lbl(e). The extended traceability TEC(i) is the extended traceability as-
sociated with i under the assumption that EC(i) is unboxed, while T CNEC (lbl(e))
is the extended traceability associated with lbl(e) under the assumption that no
further unboxing is done. If i is either unconstrained, or constrained to something
compatible with lbl(e), then it is safe to unbox it.

Formally, if we have that EC(i) ∈ CN , EC(lbl(e)) 6= EC(i), and TEC(i) t
T CNEC (lbl(e)) < > then we select i for elimination. We then take the new unboxing
to be the updated quadruple (T ′, Υ ′, CN ′, EC′) where:

EC′ = ∪lbl(e),iEC
CN ′ = (CN − {EC(lbl(e)), EC(i)}) ∪ {EC′(i)} if EC(lbl(e)) ∈ CN

= (CN − {EC(lbl(e)), EC(i)}) if EC(lbl(e)) /∈ CN
Υ ′ = Υ ∪ {EC(i)}
T ′(s) = TEC(i) t TEC(lbl(e)) if s = EC′(i)

= T (s) otherwise

For EC′, we repartition the graph so that the equivalence classes for the box
and its contents are combined into a single equivalence class. We remove the two
original equivalence classes from the candidate set, and if the contents of the box
was a candidate for unboxing we add back in the new equivalence class, which
is the union of the two original classes. All of the elements of the original equiv-
alence class of the box introduction are added to the unbox set. The extended
traceability map is updated to map the new equivalence class (including both i
and lbl(e)) to the extended traceability of the contents of the box.

If the conditions for unboxing i are not satisfied, then we take CN ′ =
CN − {EC(i)} and take T ′(EC(i)) = T (EC(i)) t r and leave the rest of the
data structures unchanged. Since we only consider each box introduction in the
program once, the algorithm terminates.

Lemma 4 (Unboxing steps preserve acceptability). If (T , Υ, CN , EC) de-
fine an acceptable unboxing as constructed by the initial phase of the algorithm
and maintained by the unboxing phase, then the (T ′, Υ ′, CN ′, EC′) quadruple pro-
duced by a single step of the algorithm above also define an acceptable unboxing.

Lemma 4 states that each step of the unboxing phase of the algorithm pre-
serves the property that the induced unboxing pair is acceptable. Consequently,
the algorithm terminates with an acceptable unboxing.



Theorem 3 (The algorithm produces an acceptable unboxing). If C; % `
e then the algorithm defined in this section produces a quadruple (T , Υ, CN , EC)
such that C ` e �� (T, Υ ) where T = T CNEC .

This construction demonstrates that the specification defined in Section 4 is
a useful one in the sense that it is satisfiable. While the algorithm defined here is
unlikely to be optimal, it has proved very effective in our compiler: on floating-
point intensive benchmarks we have measured an order of magnitude reduction
in allocation and substantial performance and parallel scalability gains.

6 Related Work

This paper provides a modular approach to showing correctness of a realistic
compiler optimization that rewrites the structure of program data structures
in significant ways. Our approach uses an arbitrary inter-procedural reaching
definitions analysis to eliminate unnecessary heap allocation in an intermediate
representation in which object representation has been made explicit. Our op-
timization can be staged freely with other optimizations. Unlike any previous
work that we are aware of, we account for correctness with respect to the meta-
data requirements of the garbage collector. For presentational purposes, we have
restricted our attention to the core concern of GC safety, but additional issues
such as value size, dynamic type tests, etc. are straightforward to incorporate.

There has been substantial previous work addressing the problem of un-
boxing. Peyton Jones [3] introduced an explicit distinction between boxed and
unboxed objects to provide a linguistic account of unboxing, and hence to allow
a high-level compiler to locally eliminate unboxes of syntactically apparent box
introduction operations. Leroy [4] defined a type-driven approach to adding co-
ercions into and out of specialized representations. The type driven translation
represented monomorphic objects natively (unboxed, in our terminology), and
then introduced wrappers to coerce polymorphic uses into an appropriate form.
To a first-order approximation, instead of boxing at definition sites this approach
boxes objects at polymorphic use sites. This style of approach has the problem
that it is not necessarily beneficial, since allocation is introduced in places where
it would not otherwise be present. This is reflected in the slowdowns observed
on some benchmarks described in the original paper. This approach also has
the potential to introduce space leaks. In a later paper [5] Leroy argued that a
simple untyped approach gives better and more predictable results.

Henglein and Jørgensen [2] defined a formal notion of optimality for local
unboxings and gave two different choices of coercion placements that satisfy their
notion of optimality. Their definition of optimality explicitly does not correspond
in any way to reduced allocation or reduced instruction count and does not seem
to provide uniform improvement over Leroy’s approach.

The MLton compiler [10] largely avoids the issue of a uniform object rep-
resentation by completely monomorphizing programs before compilation. This
approach requires whole-program compilation. More limited monomorphization



schemes could be considered in an incremental compilation setting. Monomor-
phization does not eliminate the need for boxing in the presence of dynamic type
tests or reflection. Just in time compilers (e.g. for .NET) may monomorphize dy-
namically at runtime.

The TIL compiler [1, 9] uses intensional type analysis in a whole-program
compiler to allow native data representations without committing to whole-
program compilation. As with the Leroy coercion approach, polymorphic uses
of objects require conditionals and boxing coercions to be inserted at use sites,
and consequently there is the potential to slow down, rather than speed up, the
program.

Serrano and Feeley [8] described a flow analysis for performing unboxing
substantially similar in spirit to our approach. Their algorithm attempts to find a
monomorphic typing for a program in which object representations have not been
made explicit, which they then use selectively to choose whether to use a uniform
or non-uniform representation for each particular object. Their approach differs
in that they define a dedicated analysis rather than using a generic reaching
definitions analysis. They assume a conservative garbage collector and hence do
not need to account for the requirements of GC safety, and they do not prove a
correctness result.
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