
Leaf Petersen
Curriculum Vitae

721 SW 199th PL
Normandy Park, WA 98116

United States of America
H +1 (206) 419 6834

B leaf.petersen@gmail.com
Í leafpetersen.com

Skills Summary
I have experience in the areas of type systems, programming language design and
implementation, optimizing compilers, parallel processing, functional programming,
performance optimization, and programming language runtime implementation. I have
been a founding member of two small teams which designed and built highly optimizing
compilers and runtimes for high-level programming languages. I have publications
and patents in the areas of type theory, advanced compiler optimization, transactional
memory, parallel programming, and runtime implementation. I am comfortable working
at all levels of the software stack, from high-level languages to machine instructions.

Education
1996–2005 Ph.D. in Computer Science, Carnegie Mellon University, Pittsburgh, PA.
1992–1996 B.A. in Computer Science, Williams College, Williamstown, MA.

Summa Cum Laude, Phi Beta Kappa

Doctoral thesis
title Certifying Compilation for Standard ML in a Type Analysis Framework

supervisors Dr. Robert Harper and Dr. Karl Crary
description Built an optimizing, certifying compiler for the full Standard ML language target-

ing Typed Assembly Language, using type information to do runtime type dispatch
optimizations.

1/6

mailto:leaf.petersen@gmail.com
http://leafpetersen.com


Work and Research Experience
2004–present Research Scientist, Programming Systems Lab, Intel Corporation, Santa Clara, CA.

I am part of a small team that designed and built an aggressively optimizing compiler for
an experimental high-level parallel language, subsequently retargeted to compile the Haskell
programming language. Among other optimization passes, I implemented an optimizing closure
converter, a global flow-analysis based optimization suite, a general simplifier, a data-flow
analysis framework and several inliners. I also designed and supervised the implementation of a
SIMD vectorization pass, a loop-invariant code motion pass, and a general inlining framework.
I implemented significant parts of the language runtime, and helped drive the design of
numerous garbage collection and runtime improvements. The compiler targeted standard
Intel x86 many-core processors as well as Xeon Phi co-processor boards. We demonstrated
substantial sequential and parallel performance improvement over the industry standard compiler
(GHC) on numeric benchmarks, and were in some cases able to match highly tuned parallel C
implementations. Prior projects at Intel included writing a graph-coloring register allocator
for a Java just-in-time compiler, and implementing lightweight synchronization and scheduling
mechanisms in a prototype many-core runtime.

Summer 1998 Intern, Microsoft Research, Cambridge, UK, Supervised by Dr. Luca Cardelli.
Built a distributed interpreter for an experimental process calculus (the Ambient Calculus),
using Java and XML.

1996–2004 Graduate Research Assistant, Carnegie Mellon University, Pittsburgh, PA, Super-
vised by Dr. Robert Harper and Dr. Karl Crary.
I and two other graduate students designed and built the TILT/ML compiler—an optimizing
compiler for the full Standard ML programming language. TILT used runtime type information
to allow for non-uniform data representations, and for doing tag-free garbage collection. For
my doctoral thesis, I designed, built, and measured a certifying backend for the TILT compiler,
allowing the optimized code to be generated as statically checkable x86 Typed Assembly
Language while preserving the benefits of the type-based optimizations. I proved soundness
results for each of the main translation phases, including a general account of register allocation
soundness.

1994–1996 Undergraduate Research Assistant, Williams College, Williamstown, MA, Super-
vised by Dr. Kim Bruce.
Worked with Dr. Bruce on the design and implementation of a strongly-typed object oriented
language (LOOM) based around match-bounded polymorphism. Designed and implemented a
module system for LOOM as an undergraduate honors thesis project.

Languages
English Native
Spanish Limited working proficiency

Programming Languages
I have done most of my recent programming in C and Standard ML (with a bit of Perl
on the side). I have in the past worked in C++, Java, Perl, Haskell, and OCaml.

2/6



Personal Details
Citizenship United States of America

Interests Squash, Alpine Climbing, Cooking, Gardening, Guitar

Patents
Software assisted nested hardware transactions

US7730286 B2, CN101317160B, DE602006014596D1, EP1966697B1, WO2007078891A1
Leaf Petersen, Bratin Saha, Ali-Reza Adl-Tabatabai

Future scheduling by direct representation of possible dependencies
US8225326 B2
Leaf Petersen, Anwar Ghuloum, Mohan Rajagopalan

Safe code-motion of dangerous instructions during compiler optimization
US7810086 B2
Brian R. Murphy, Vijay S. Menon, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Leaf
Petersen

Service Activities
Program Committee (PC) member
{ 2014 Symposium on Practical Aspects of Declarative Languages (PADL 2014)
{ 2013 Workshop on Functional High-Performance Computing (FHPC 2013)
{ 2012 Workshop on Declarative Aspects of Multicore Programming (DAMP 2012)
{ 2011 Workshop on Declarative Aspects of Multicore Programming (DAMP 2011)
{ 2010 Workshop on Declarative Aspects of Multicore Programming (DAMP 2010)
{ 2009 ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2009)

Reviewer and panelist for a 2013 National Science Foundation grant program in the
area of parallel processing.
Participant in 2013 National Science Foundation Workshop on High-Level Program-
ming Models for Parallelism (invitation-only).
External reviewer for numerous conferences and workshops including PACT, PLDI,
POPL, PADL, ECOOP, ICFP, IFL, and TLDI.
General Chair
{ 2010 Workshop on Declarative Aspects of Multicore Programming (DAMP 2010)
{ 2009 Workshop on Declarative Aspects of Multicore Programming (DAMP 2009)
{ 2008 Workshop on Declarative Aspects of Multicore Programming (DAMP 2008)

3/6



Publications
Review copies available at http://www.leafpetersen.com

Conference and Workshop Publications
ICFP 2013 Automatic SIMD Vectorization for Haskell

In 2013 ACM SIGPLAN International Conference on Functional Programming
Leaf Petersen, Dominic Orchard and Neal Glew

DTP 2013 A Multivalued Language with a Dependent Type System
In 2013 ACM SIGPLAN Workshop on Dependently Typed Programming
Neal Glew, Tim Sweeney and Leaf Petersen

HS 2013 The Intel Labs Haskell Research Compiler
In 2013 ACM SIGPLAN Haskell Symposium
Hai Liu, Neal Glew, Leaf Petersen and Todd Anderson

IFL 2013 Measuring the Haskell Gap
In 2013 International Symposium on Implementation and Application of Functional
Languages
Leaf Petersen, Todd Anderson, Hai Liu and Neal Glew

CC 2012 GC-Safe Interprocedural Unboxing
In 2012 International Conference on Compiler Construction
Leaf Petersen and Neal Glew

CUFP 2010 Functional language compiler experiences at Intel
In 2010 ACM SIGPLAN Commercial Users of Functional Programming
Leaf Petersen and Neal Glew

EUROSYS
2007

Enabling scalability and performance in a large scale CMP environment
In 2007 ACM SIGOPS/EuroSys European Conference on Computer Systems
Bratin Saha, Ali-Reza Adl-Tabatabai, Anwar M. Ghuloum, Mohan Rajagopalan,
Richard L. Hudson, Leaf Petersen, Vijay Menon, Brian R. Murphy, Tatiana Shpeisman,
Eric Sprangle, Anwar Rohillah, Doug Carmean and Jesse Fang

LCPC 2007 Pillar: A Parallel Implementation Language
In 2007 Workshop on Languages and Compilers for Parallel Computing
Todd A. Anderson, Neal Glew, Peng Guo, Brian T. Lewis, Wei Liu, Zhanglin Liu,
Leaf Petersen, Mohan Rajagopalan, James M. Stichnoth, Gansha Wu and Dan
Zhang

4/6

http://www.leafpetersen.com


POPL 2006 A Verifiable SSA Program Representation for Aggressive Compiler Optimiza-
tion
In 2006 ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages
Vijay S. Menon, Neal Glew, Brian R. Murphy Andrew McCreight, Tatiana Shpeisman,
Ali-Reza Adl-Tabatabai and Leaf Petersen

TLDI 2005 Strict Bidirectional Type Checking
In 2005 ACM SIGPLAN International Workshop on Types in Language Design and
Implementation
Adam Chlipala, Leaf Petersen, and Robert Harper

POPL 2003 A Type Theory for Memory Allocation and Data Layout
In 2003 ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages
Leaf Petersen, Robert Harper, Karl Crary and Frank Pfenning

TLDI 2003 Typed Compilation of Recursive Datatypes
In 2003 ACM SIGPLAN International Workshop on Types in Language Design and
Implementation
Joseph C. Vanderwaart, Derek R. Dreyer, Leaf Petersen, Karl Crary, and Robert
Harper

ECOOP 1997 Subtyping is not a good ’Match’ for object-oriented languages
In 1997 European Conference for Object-Oriented Programming
Kim B. Bruce, Adrian Fiech, and Leaf Petersen

Ph.D. Thesis
Certifying Compilation for Standard ML in a Type Analysis Framework
PhD thesis, Carnegie Mellon University, 2005
Leaf Petersen

Other Publications
Type-Preserving Flow Analysis and Interprocedural Unboxing

In 2012 Intel Technical Report
Neal Glew and Leaf Petersen

5/6



Implementing the TILT Internal Language
In 2000 Carnegie Mellon School of Computer Science Technical Report
Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone

Transparent and Opaque Interpretations of Datatypes
In 1998 Carnegie Mellon School of Computer Science Technical Report
Karl Crary, Robert Harper, Perry Cheng, Leaf Petersen, and Chris Stone

A Module System for LOOM
In 1996 Undergraduate thesis, Williams College
Leaf Petersen

6/6


	Skills Summary
	Education
	Doctoral thesis
	Work and Research Experience
	Languages
	Programming Languages
	Personal Details
	Patents
	Service Activities
	Publications
	Conference and Workshop Publications
	Ph.D. Thesis
	Other Publications

